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CLOMP 

Summary Version 

1.2 

Purpose of Benchmark 

CLOMP is the C version of the Livermore OpenMP benchmark developed to measure OpenMP 
overheads and other performance impacts due to threading. For simplicity, it does not use MPI 
by default but it is expected to be run on the resources a threaded MPI task would use (e.g., a 
portion of a shared memory compute node). As of CLOMP version 1.2, compiling with 
-DWITH_MPI allows packing one or more nodes with CLOMP tasks and having CLOMP report 
OpenMP performance for the slowest MPI task. On current systems, the strong scaling 
performance results for 4, 8, or 16 threads are of the most interest.   Suggested weak scaling 
inputs are provided for evaluating future systems.   
 
Characteristics of Benchmark  
 
CLOMP’s target input approximates a typical scientific application inner loop workload under 
strong scaling conditions. The overall speedup and implied overhead of several OpenMP 
scheduling algorithms are then measured. Most current OpenMP benchmarks tolerate OpenMP 
overheads several orders of magnitude higher than is necessary in order to get reasonable 
performance out of threading loops with just a few hundred thousand cycles of work in them. In 
order to get good performance with CLOMP’s target input, and with many of our scientific 
applications, it is critical for there to be hardware support for threading and for the OpenMP 
compilers and libraries to be implemented to effectively use this OpenMP-accelerating hardware. 
The CLOMP benchmark can be used to demonstrate the need for new techniques for reducing 
thread overheads and to evaluate the effectiveness of these new techniques. The CLOMP 
benchmark is highly configurable and can also be used to evaluate the handling of other well-
known threading issues such as NUMA memory layouts, cache effects, and memory contention 
that also can significantly affect performance.   
 

Examples of OpenMP Hardware Support  

 
Examples of OpenMP hardware support in current systems include support for atomic operations 
and locking operations in L2 cache and mechanism for efficiently distributing work to a large 
number of threads. For today's systems that synchronize threads thru main memory, current best-
in-class implementations of OpenMP have overheads at least ten times larger than is required by 
many of our applications for effective use of OpenMP. For these applications to most effectively 
use OpenMP with 8 threads per MPI task, they require thread barrier latencies on the order of 
200 processor cycles and total OpenMP “parallel for” overheads on the order of 500 processor 
cycles on high performance systems. With a single read from main memory often taking several 
hundred cycles, it is clearly impossible to achieve these overhead goals without specialized 
hardware support.    
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Parameters of Benchmark 

The CLOMP benchmark is configured entirely at run time using the command-line parameters. 
The usage information for the CLOMP Version 1.2 benchmark that is output when it is run with 
no arguments is shown in Fig. 1. The numThreads argument specifies the number of OpenMP 
threads to use when running the benchmark, where the special value ‘-1’ specifies that the 
default number of OpenMP threads (usually the number of processors or the number of threads 
set via OMP_NUM_THREADS). The allocThreads argument specifies how many threads 
will be used to allocate the memory. The typical values for allocThreads are 1 and -1. 
Setting allocThreads to 1 emulates what most of our codes do, which allocates all the 
memory touched in the main thread (which causes poor thread memory layout on systems that 
exhibit NUMA effects). Setting allocThreads to -1 (or the number of threads used) threads 
the allocation using OpenMP the same way the calculations are threaded so that the same threads 
will allocate the memory as use them, thereby improving thread memory layout. (This is not 
currently guaranteed to be true by OpenMP, but it appears to be true for some OpenMP 
implementations). Although ideally programs would allocate all the memory a thread touches in 
that same thread, in practice this is often very hard to do. Thus, we are interested in the 
performance difference caused by whether the allocations themselves were done serially or in 
parallel. 

The numParts, zonesPerPart, zoneSize, and flopScale command-line arguments in 
Fig. 1 will be described more fully below as we describe the mesh and computer kernels of the 
CLOMP benchmark. The last command line argument, timeScale, is provided as a 
convenience for those running the CLOMP benchmark; it scales the run-time of the benchmark. 
A timeScale of 100 was designed to run for between 5 and 30 seconds for a serial run of the 
kernel (depends on mesh size and machine speed) that should provide reasonably accurate 
timings given the resolution of the timers used. A timeScale of 1 runs the benchmark very 
quickly to identify scaling problems and correctness but probably inaccurate timings. Using a 
timeScale of 100 is probably a reasonable, yet still short, run on most current machines but 
may have to be adjusted for machine speed. 
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Figure 1  Usage information for CLOMP benchmark. 
 
The CLOMP benchmark creates a simple unstructured mesh (see Fig. 2) that is configured via 
the command-line parameters numParts, zonesPerPart, and zoneSize that were shown in 
Fig. 1. The mesh consists of “numParts” independent zone partitions where each zone partition 
contains “zonesPerPart” zones. The CLOMP benchmark explicitly allocates all the zones (e.g., 
Zone01, Zone02, Zone 03, and Zone04 in Fig. 2) in each zone partition (e.g., Part0 in Fig. 2) in a 
continuous block, so that all the partition’s zones are immediately adjacent to each other (even 
though they are accessed via a linked list). This zone allocation strategy should allow prefetching 
to work well while traversing each partition’s zones. The amount of memory allocated for each 
zone is set by the zoneSize parameter (shown in Fig. 1), although there is a system dependent 
minimum size that is usually 32 bytes. Only the first approximately 32 bytes of each zone is 
actually used, and the zoneSize parameter is provided mainly as a way to increase the memory 
footprint of the mesh without creating more work. 

Usage: clomp numThreads allocThreads numParts \
           zonesPerPart zoneSize flopScale timeScale 
 
New in Version 1.2: Compile with -DWITH_MPI to generate clomp_mpi 
 
  numThreads: Number of OpenMP threads to use (-1 for system default) 
  allocThreads: #threads when allocating data (-1 for numThreads) 
  numParts: Number of independent pieces of work (loop iterations) 
  zonesPerPart: Number of zones in the first part (3 flops/zone/part) 
  zoneSize: Bytes in zone, only first ~32 used (512 nominal, >= 32 valid) 
  flopScale: Scales flops/zone to increase memory reuse (1 nominal, >=1 Valid) 
  timeScale: Scales target time per test (10-100 nominal, 1-10000 Valid) 
 
Some interesting testcases (last number controls run time): 
           Target input:    clomp 16 1 16 400 32 1 100 
   Target/NUMA friendly:    clomp 16 -1 16 400 32 1 100 
    Weak Scaling Target:    clomp N -1 N 400 32 1 100 
      Weak Scaling Huge:    clomp N -1 N 6400 32 1 100 
  Strong Scaling Target:    clomp -1 -1 1024 10 32 1 100 
        Mem-bound input:    clomp N 1 N 640000 32 1 100 
Mem-bound/NUMA friendly:    clomp N -1 N 640000 32 1 100 
  MPI/OMP Hybrid Target:    (mpirun -np M) clomp_mpi 16 1 16 400 32 1 100  
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Figure 2  CLOMP unstructured mesh data structures for numParts = 4 and zonesPerPart=4. 
 
No real or useful physics is done by the CLOMP benchmark, but a configurable amount of 
physics-like work is done in each zone during each “physics cycle,” and the benchmark is 
designed to produce bit-for-bit reproducible (and predictable) answers no matter how many 
threads are used to calculate the results. The CLOMP benchmark uses this property (and other 
techniques) to detect many common threading errors. The thread-parallel kernel for the CLOMP 
benchmark is shown in Fig. 3 with OpenMP directives for static scheduling. The 
calc_deposit() call in Fig. 3 represents an MPI exchange of data (although currently no MPI 
is done in the timing sections CLOMP, even with -DWITH_MPI) and must be called from a 
single-threaded region and must be called after the previous thread parallel work is done. All the 
computational work is done in the update_part(), and it is the for loop around 
update_part() that is the target for threading. 

 
Figure 3  CLOMP thread-parallel kernel with OpenMP directives and static scheduling. 
 
Although the focus of the CLOMP benchmark is the OpenMP kernel shown in Fig. 3, a 
simplified version of the compute kernel of update_part() is shown in Fig. 4 in order to 
explain the flopScale command-line parameter from Fig. 1. This update_part() kernel 
follows the linked list of zones in each zone partition and does a little bit of math on the zone’s 
value. Its purpose is to consume cycles in a configurable way that produces verifiable output, not 
to actually do anything useful. When flopScale is 1 (the desired target setting), each iteration 
of the outside zone traversal loop does (with a reasonable optimizer) two loads from the zone 
(zone->value, a double, and zone->nextZone, a pointer), does a double multiple, a double add, 
and a double subtract, and a double store to the zone (zone->value, a double). This memory 

deposit = calc_deposit (); /* Sync, non-threadable */
#pragma omp parallel for private (pidx) schedule(static) 
for (pidx = 0; pidx < num_parts; pidx++) 
   update_part (partArray[pidx], deposit); 
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access to flop ratio is representative of several interesting scientific calculations and can put a 
load on the memory system, especially prefetching logic of the memory system. By setting the 
flopScale parameter to 100 and reducing the mesh size by 100, one can get an input of 
approximately the same run time that is much less affected by the memory system. Using a value 
greater than 1 for flopScale is interesting only for explaining performance anomalies in the 
benchmark run when flopScale is set to 1. 

 
Figure 4  The non-threadable compute kernel of update_part(). 

 
The CLOMP benchmark measures the total overhead for static, dynamic, and manual OpenMP 
“parallel for” loop scheduling and the speedup achieved when performing a “physics cycle” on 
the specified unstructured mesh. The potential “best-case” speedup is also determined in order to 
provide an approximate upper bound on threaded performance and in order to be able to 
calculate an efficiency rating for the OpenMP implementation. By running the CLOMP 
benchmark with several different mesh sizes and thread configurations, the performance effect of 
OpenMP overheads, NUMA effects, cache and memory bandwidth and latency effects, and 
prefetching effectiveness can be clearly seen. The amount of work each benchmark OpenMP test 
performs is run-time configurable and is, by design, independent of mesh size, so that a wide 
range of CLOMP benchmark runs can be done quickly. 

Below we suggest some run configurations for CLOMP that have shown interesting results on 
the systems tested. There are probably many other useful configurations to try. 

Mechanics of Building Benchmark 

The CLOMP benchmark consists of one C file, clomp.c, and a Makefile that contains the 
compile line for a few compilers, and an example script run_clomp.bgq of 19 interesting run 
configurations. You can either compile clomp.c directly with the desired compiler arguments to 
get good OpenMP performance or you can put the compile line in the Makefile. Running the 
Makefile with no arguments shows the compiler lines available. For example, make icc builds 
CLOMP with icc (assumed to be in your path) (on Linux), make gcc builds with gcc, etc. If 
you are reporting results to us, please specify the compiler options uses to build CLOMP. 

Setting Up the OpenMP Environment 

On the few systems we have tested so far, additional system-specific and/or compiler-specific 
environment variables need to be set in order to get good thread performance. These 
environment variables were required to configure the threading system to maximize the 
performance of the threads in the CLOMP run instead of minimizing the cycles used by the 
threading system. These thread settings usually caused the threading system to no longer do 

for (zone = part->firstZone; zone != NULL; zone = zone->nextZone) 
{ 
 for (scale_count = 0; scale_count < flopScale; scale_count++) 
 { 
     deposit = remaining_deposit * deposit_ratio; 
     zone->value += deposit; 
     remaining_deposit -= deposit; 
 } 
} 
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thread yields but to instead spin-wait waiting for a resource. Also, these thread settings 
sometimes give threads strong processor affinity, bind threads to separate processors, or direct 
the operating system to use all the available processors to run threads instead of just a few. We 
found these settings by looking at the SPEC OpenMP benchmark results where all environment 
variables set have to be specified and/or by asking the vendors for suggestions. 

For example, on BGQ with the xlc compiler, these two environment variables had to be set for 
the best performance: 

setenv OMP_WAIT_POLICY ACTIVE 

setenv BG_SMP_FAST_WAKEUP YES 

On Linux with older icc compiler versions, this environment variable was very important for 
good performance: 

setenv KMP_BLOCKTIME 100000 

For both BGQ/xlc and Linux/icc, there were other thread environment variables available to be 
set that didn’t affect performance in our tests but could be important for others (such setting 
KMP_LIBRARY to turnaround for Linux/icc). With some settings, OMP_NUM_THREADS 
had to be set to the number of threads used in order to get good performance 
(OMP_NUM_THREADS was used by the thread binding system). 

If you are reporting benchmark results to us, please describe what environment variables were 
set and why. 

Mechanics of Running Benchmark 

The CLOMP benchmark should be run on a dedicated (idle) node with the appropriate thread 
performance environment variables set (described above). All the runs should be done on the 
same machine around the same time (if possible) because we have found memory layout to 
sometimes be different on different nodes of the same cluster. The benchmark can be run directly 
(as described in Fig. 1), but when generating CORAL RFP results, it can be useful to modify the 
provided example script “run_clomp.bgq” to run a suite of CLOMP runs and automatically 
create comma-delimited result summary files that can be loaded into the CORAL results 
spreadsheet. The run_clomp.bgq script was designed to run 19 variations we have found most 
useful during our CLOMP benchmarking runs on our current machines. The script comments 
indicate which runs are for strong scaling performance, weak scaling performance, detecting 
bandwidth limitations, detecting NUMA bandwidth limitations, and detecting hybrid 
OpenMP/MPI performance issues.   The comma-delimited value file run_clomp.CORAL_RFP is 
designed to be easily loaded into a spreadsheet and then pasted into the CORAL RFP results 
spreadsheet.     

Interpreting the Output 

The output of the CLOMP benchmark is fairly descriptive (pseudo code of what is being 
measured in printed in the full CLOMP output) and will not be described in detail here.  The 
most important performance result of interest is the speedup for the OpenMP static schedule case 
over the serial run for ~400 zones per thread with the number of threads equal to the number of 
processor cores/threads dedicated to a single MPI task. Ideally, that speedup should be close to 
the number of threads used but is typically much lower due to current OpenMP overheads.    


