LSMS

Summary Version
1.1

Purpose of Benchmark
Single node performance with focus on dense linear algebra and parallel scaling
efficiency to full system.

Characteristics of Benchmark

WL-LSMS is a code to perform first principles ground state calculations of solid state
systems and statistical physics calculations with a focus on magnetic systems. This
benchmark will combine these two aspects of the code characterize both single node
performance and full system scalability.

The code, at the top level, is parallelized over Wang-Landau (WL) Monte-Carlo
walkers. As the WL requires the update of the global density of states, the current
implementation in WL-LSMS executes all WL walkers on a master node and sends
configurations to individual LSMS instances that perform the computationally
intensive first principles calculation. The LSMS first principles calculation
parallelizes over individual atom or groups of atoms and its performance is largely
determined by dense matrix operations, in particular complex matrix inversion,
providing good predictions for linear algebra dominated performance.

Mechanics of Building Benchmark

The code uses both C++ and Fortran. The specific compiler options and libraries are
specified in a file (architecture.h) include by the Makefile. (Examples are
available in the architecture/ directory.) In addition to the standard linear
algebra libraries BLAS and LAPACK, WL-LSMS requires the serial HDF5 library.

Mechanics of Running Benchmark
Please also refer to the README file in the WL-LSMS directory.

1. Small problem: single node and/or single CPU
Not required for scaling benchmark. As preparation and for testing and
optimization of the WL-LSMS scaling benchmarks it is possible to execute
a single LSMS instance without the WL part. (LSMS is limited to using
#MPI Ranks * #OMP Threads <= #Atoms)



e.g. for 16 atoms use the input from LSMS/Test/Fel6:
mpirun -np 1 lsms i 1lsms (if using openmp on the node)
mpirun -np 16 lsms i 1lsms (if using MPI only)

The number of atoms can be changed in the i_lsms file by changing the
integer parameters xRepeat, yRepeat, and zRepeat. The number of atoms
is 2* xRepeat*yRepeat*zRepeat.

2. Medium problem: (<1K node) job
Using 1024 Atoms/Walker, 32 MPI ranks/walker: (using openmp on

node)
mpirun —np 961 wl-lsms —-i 1 lsms —mode 1ld —-size lsms
1024 —num lsms 30 —num steps 600

3. Large Titan problem:

580 walkers:
mpirun —np 18561 wl-lsms —-i 1 lsms -mode 1d -
size lsms 1024 —num lsms 580 —-num steps 11600

4. CORAL class problem:
a. Scalable Science: At least 4X performance of full Sequoia/Titan job

using weak scaling:
mpirun —np 74240 wl-lsms —-i 1 lsms -mode 1d -
size lsms 1024 -num lsms 2320 —num steps 46400

Scaling metric:
Number of Steps / Walltime

Verification of Results
The validation number is the average band energy written at the end of a wl-Isms
run:

Finished all scheduled calculations. Freeing resources.
Energy mean = 4325.68Ry

WL-LSMS finished in 26618.4 seconds.

Monte-Carlo steps / walltime = 0.133479/sec

Energy mean has to be 4.225 +/- 0.032 Ry per atom (i.e. for 1024 atoms
4326.400 +/- 32.768 Ry)



