
Page 1 of 8
(UCRL-MI-234771)

CLOMP

Summary Version
1.0

Purpose of Benchmark
CLOMP is the C version of the Livermore OpenMP benchmark developed to measure OpenMP
overheads and other performance impacts due to threading in order to influence future system
designs. Current best-in-class implementations of OpenMP have overheads at least ten times
larger than is required by many of our applications for effective use of OpenMP. For these
applications to effectively use OpenMP, they require thread barrier latencies of less than 200
processor cycles and total OpenMP “parallel for” overheads of less than 500 processor cycles.
The CLOMP benchmark can be used to demonstrate the need for new techniques for reducing
thread overheads and to evaluate the effectiveness of these new techniques. The CLOMP
benchmark is highly configurable and can also be used to evaluate the handling of other well-
known threading issues such as NUMA memory layouts, cache effects, and memory contention
that also can significantly affect performance.

Overview, Characteristics, and Parameters of Benchmark
The CLOMP benchmark is configured entirely at run time using the command-line parameters.
The usage information for the CLOMP benchmark that is output when it is run with no
arguments is shown in Fig. 1. The numThreads argument specifies the number of OpenMP
threads to use when running the benchmark, where the special value ‘-1’ specifies that the
default number of OpenMP threads (usually the number of processors or the number of threads
set via OMP_NUM_THREADS). The allocThreads argument specifies how many threads
will be used to allocate the memory. The typical values for allocThreads are 1 and -1.
Setting allocThreads to 1 emulates what most of our codes do, which allocates all the
memory touched in the main thread (which causes poor thread memory layout on systems that
exhibit NUMA effects). Setting allocThreads to -1 (or the number of threads used) threads
the allocation using OpenMP the same way the calculations are threaded so that the same threads
will allocate the memory as use them, thereby improving thread memory layout. (This is not
currently guaranteed to be true by OpenMP, but it appears to be true for some OpenMP
implementations). Although ideally programs would allocate all the memory a thread touches in
that same thread, in practice this is often very hard to do. Thus, we are interested in the
performance difference caused by whether the allocations themselves were done serially or in
parallel.

The numParts, zonesPerPart, zoneSize, and flopScale command-line arguments in
Fig. 1 will be described more fully below as we describe the mesh and computer kernels of the
CLOMP benchmark. The last command line argument, timeScale, is provided as a
convenience for those running the CLOMP benchmark; it scales the run-time of the benchmark.
A timeScale of 100 was designed to run for between 5 and 30 seconds for a serial run of the
kernel (depends on mesh size and machine speed) that should provide reasonably accurate
timings given the resolution of the timers used. A timeScale of 1 runs the benchmark very
quickly to identify scaling problems and correctness but probably inaccurate timings. Using a

Page 2 of 8
(UCRL-MI-234771)

timeScale of 100 is probably a reasonable, yet still short, run on most current machines but
may have to be adjusted for machine speed.

Figure 1 Usage information for CLOMP benchmark.

The CLOMP benchmark creates a simple unstructured mesh (see Fig. 2) that is configured via
the command-line parameters numParts, zonesPerPart, and zoneSize that were shown in
Fig. 1. The mesh consists of “numParts” independent zone partitions where each zone partition
contains “zonesPerPart” zones. The CLOMP benchmark explicitly allocates all the zones (e.g.,
Zone01, Zone02, Zone 03, and Zone04 in Fig. 2) in each zone partition (e.g., Part0 in Fig. 2) in a
continuous block, so that all the partition’s zones are immediately adjacent to each other (even
though they are accessed via a linked list). This zone allocation strategy should allow prefetching
to work well while traversing each partition’s zones. The amount of memory allocated for each
zone is set by the zoneSize parameter (shown in Fig. 1), although there is a system dependent
minimum size that is usually 32 bytes. Only the first approximately 32 bytes of each zone is
actually used, and the zoneSize parameter is provided mainly as a way to increase the memory
footprint of the mesh without creating more work.

Usage: ./clomp_icc_atlas36 numThreads allocThreads numParts \
 zonesPerPart zoneSize flopScale timeScale

 numThreads: Number of OpenMP threads to use (-1 for system default)
 allocThreads: #threads when allocating data (-1 for numThreads)
 numParts: Number of independent pieces of work (loop iterations)
 zonesPerPart: Number of zones in the first part (3 flops/zone/part)
 zoneSize: Bytes in zone, only first ~32 used (512 nominal, >= 32 valid)
 flopScale: Scales flops/zone to increase memory reuse (1 nominal, >=1 Valid)
 timeScale: Scales target time per test (10-100 nominal, 1-10000 Valid)

Some interesting testcases (last number controls run time):
 Target input: ./clomp_icc_atlas36 -1 1 64 100 32 1 100
 Target/NUMA friendly: ./clomp_icc_atlas36 -1 -1 64 100 32 1 100
 Cache friendly: ./clomp_icc_atlas36 -1 1 64 1 32 100 100
 Cache/OpenMP friendly: ./clomp_icc_atlas36 -1 1 64 1 32 1000 100
 Mem-bound input: ./clomp_icc_atlas36 -1 1 64 10000 512 1 100
Mem-bound/NUMA friendly: ./clomp_icc_atlas36 -1 -1 64 10000 512 1 100

Page 3 of 8
(UCRL-MI-234771)

Figure 2 CLOMP unstructured mesh data structures for numParts = 4 and zonesPerPart=4.

No real or useful physics is done by the CLOMP benchmark, but a configurable amount of
physics-like work is done in each zone during each “physics cycle,” and the benchmark is
designed to produce bit-for-bit reproducible (and predictable) answers no matter how many
threads are used to calculate the results. The CLOMP benchmark uses this property (and other
techniques) to detect many common threading errors. The thread-parallel kernel for the CLOMP
benchmark is shown in Fig. 3 with OpenMP directives for static scheduling. The
calc_deposit() call in Fig. 3 represents an MPI exchange of data (although currently no MPI
is done in CLOMP) and must be called from a single-threaded region and must be called after
the previous thread parallel work is done. All the computational work is done in the
update_part(), and it is the for loop around update_part() that is the target for threading.

Figure 3 CLOMP thread-parallel kernel with OpenMP directives and static scheduling.

Although the focus of the CLOMP benchmark is the OpenMP kernel shown in Fig. 3, a
simplified version of the compute kernel of update_part() is shown in Fig. 4 in order to
explain the flopScale command-line parameter from Fig. 1. This update_part() kernel
follows the linked list of zones in each zone partition and does a little bit of math on the zone’s
value. Its purpose is to consume cycles in a configurable way that produces verifiable output, not
to actually do anything useful. When flopScale is 1 (the desired target setting), each iteration
of the outside zone traversal loop does (with a reasonable optimizer) two loads from the zone
(zone->value, a double, and zone->nextZone, a pointer), does a double multiple, a double add,
and a double subtract, and a double store to the zone (zone->value, a double). This memory
access to flop ratio is representative of several interesting scientific calculations and can put a

deposit = calc_deposit (); /* Sync, non-threadable */
#pragma omp parallel for private (pidx) schedule(static)
for (pidx = 0; pidx < num_parts; pidx++)
 update_part (partArray[pidx], deposit);

Part0
FirstZone
PartData

Zone01
NextZone
ZoneData

Zone02
NextZone
ZoneData

Zone03
NextZone
ZoneData

Zone04
NextZone
ZoneData

Part1
FirstZone
PartData

Zone11
NextZone
ZoneData

Zone12
NextZone
ZoneData

Zone13
NextZone
ZoneData

Zone14
NextZone
ZoneData

Part2
FirstZone
PartData

Zone21
NextZone
ZoneData

Zone22
NextZone
ZoneData

Zone23
NextZone
ZoneData

Part3
FirstZone
PartData

Zone31
NextZone
ZoneData

Zone32
NextZone
ZoneData

PartPtr0

PartPtr1

partArray[4]

PartPtr2

PartPtr3
Zone33
NextZone
ZoneData

Zone34
NextZone
ZoneData

Zone24
NextZone
ZoneData

Page 4 of 8
(UCRL-MI-234771)

load on the memory system, especially prefetching logic of the memory system. By setting the
flopScale parameter to 100 and reducing the mesh size by 100, one can get an input of
approximately the same run time that is much less affected by the memory system. Using a value
greater than 1 for flopScale is interesting only for explaining performance anomalies in the
benchmark run when flopScale is set to 1.

Figure 4 The non-threadable compute kernel of update_part().

The CLOMP benchmark measures the total overhead for static, dynamic, and manual OpenMP
“parallel for” loop scheduling and the speedup achieved when performing a “physics cycle” on
the specified unstructured mesh. The potential “best-case” speedup is also determined in order to
provide an approximate upper bound on threaded performance and in order to be able to
calculate an efficiency rating for the OpenMP implementation. By running the CLOMP
benchmark with several different mesh sizes and thread configurations, the performance effect of
OpenMP overheads, NUMA effects, cache and memory bandwidth and latency effects, and
prefetching effectiveness can be clearly seen. The amount of work each benchmark OpenMP test
performs is run-time configurable and is, by design, independent of mesh size, so that a wide
range of CLOMP benchmark runs can be done quickly.

Below we suggest some run configurations for CLOMP that have shown interesting results on
the systems tested. There are probably many other useful configurations to try.

Mechanics of Building Benchmark
The CLOMP benchmark consists of one C file, clomp.c, and a Makefile that contains the
compile line for a few compilers. You can either compile clomp.c directly with the desired
compiler arguments to get good OpenMP performance or you can put the compile line in the
Makefile. Running the Makefile with no arguments shows the compiler lines available. For
example, make icc builds CLOMP with icc (assumed to be in your path) (on Linux), make
xlc builds with xlc (on AIX), and make gcc4 uses gcc4 provided by some versions of Red Hat
Linux. The Makefile encodes the name of the compiler and the node it is built on (for example,
clomp_icc_atlas36). The executable built should be used for all the tests (no recompiling should
be necessary) on that platform (i.e., even if on a different node of Atlas). If you are reporting
results to us, please specify the compiler options uses to build CLOMP.

Setting Up the OpenMP Environment
On the few systems we have tested so far, additional system-specific and/or compiler-specific
environment variables need to be set in order to get good thread performance. These
environment variables were required to configure the threading system to maximize the

for (zone = part->firstZone; zone != NULL; zone = zone->nextZone)
{
 for (scale_count = 0; scale_count < flopScale; scale_count++)
 {
 deposit = remaining_deposit * deposit_ratio;
 zone->value += deposit;
 remaining_deposit -= deposit;
 }
}

Page 5 of 8
(UCRL-MI-234771)

performance of the threads in the CLOMP run instead of minimizing the cycles used by the
threading system. These thread settings usually caused the threading system to no longer do
thread yields but to instead spin-wait waiting for a resource. Also, these thread settings
sometimes give threads strong processor affinity, bind threads to separate processors, or direct
the operating system to use all the available processors to run threads instead of just a few. We
found these settings by looking at the SPEC OpenMP benchmark results where all environment
variables set have to be specified and/or by asking the vendors for suggestions.

For example, on AIX with the xlc compiler, this environment variable had to be set for good
performance:

setenv XLSMPOPTS spins=0:yields=0

On Linux with the icc compiler, this environment variable was very important for good
performance:

setenv KMP_BLOCKTIME 100000

For both AIX/xlc and Linux/icc, there were other thread environment variables available to be
set that didn’t affect performance in our tests but could be important for others (such as startproc
and stride parameters for AIX/xlc and setting KMP_LIBRARY to turnaround for Linux/icc).
With some settings, OMP_NUM_THREADS had to be set to the number of threads used in
order to get good performance (OMP_NUM_THREADS was used by the thread binding
system).

If you are reporting benchmark results to us, please describe what environment variables were
set and why.

Mechanics of Running Benchmark
The CLOMP benchmark should be run on a dedicated (idle) node with the appropriate thread
performance environment variables set (described above). All the runs should be done on the
same machine around the same time (if possible) because we have found memory layout to
sometimes be different on different nodes of the same cluster. The benchmark can be run directly
(as described in Fig. 1), but when doing a performance study, it can be useful to use the provided
script “run_clomp” to run a suite of CLOMP runs and automatically create comma-delimited
result summary files that can be loaded into a spreadsheet for creating result charts. The
run_clomp script was designed to run the variations we have found useful during our CLOMP
benchmarking runs. It requires about 2 hours to run (if the threading environment is set up
properly) and about 2GB of memory. If the 2GB of node memory is not available, reducing the
MAX_ZONE_SCALE=10000 setting (around line 97 of the run_clomp script) to 1000 should
greatly reduce the memory requirements (and run-time requirements). There are other parameters
starting at around line 90 of the script that control what CLOMP variations get run by the
run_clomp script.

One of the most important results for us is the Static OpenMP performance for around 6400
zones total (the “target” input size), which is a reasonably large number of zones per node for
many interesting applications when running a large parallel simulation, with numThreads equal
to the total number of processor cores on the machine. The run_clomp script runs this variation
and prints out its results first, so problems with the thread environment, etc., can be caught
quickly and corrected before running all the other variations. If setting numThreads equal to the
number of cores per processor yields better results, we are also interested in that result also. All

Page 6 of 8
(UCRL-MI-234771)

the other variations that the run_clomp script runs are designed to give insight into these results
for the “target” input size (as well as measure some other system characteristics). Most of the
run_clomp script variations use the -1 allocThreads setting in an attempt to maximize
performance on systems with NUMA effects. Just two large runs are done with
1 allocThread in order to show the performance impact of NUMA effects on the machine
(without doubling the number of CLOMP runs performed).

The run_clomp script takes three arguments: the executable_name to run, the maximum
numThreads to run (typically the total number of processor cores on the node), and the
timeScale factor to use (typically 100). Figure 5 shows the initial output from the script (it
indicates every CLOMP run it is executing) for the executable “clomp_icc_zeus8” with runs up
to eight threads and using a timeScale of 100. The first run of

clomp_icc_zeus8 8 -1 64 100 32 1 100

is the “target input” run that is representative of many of our applications (6400 zones) and
which is needed in order to run efficiently with OpenMP (as described earlier). This is one of the
most important performance results for us. In this case, the “Static OMP Speedup” was 3.97,
instead of the desired 8. This is expected (but not desired) on many current systems (we rarely
see over 4X for eight threads). If threading environment variables are not set properly, we often
see a slowdown for this run (and we stop run_clomp and fix things before continuing). The next
run with 10X more zones than the “target input” shows a superlinear speedup due to cache
effects, but the “Static OMP Speedup” of 26.66 is still less than the “Bestcase OMP Speedup” of
29.60 due to OpenMP overheads. These “key” CLOMP runs continue up to 64 parts and
1000000 zones per part (64,000,000 total zones) with the maximum threads specified (eight in
this case).

After the “key” runs, the run_clomp script then does CLOMP runs at each total zone size with 1
to numThreads threads to measure how the performance results vary with number of threads.
The numParts and zonesPerPart settings are adjust by the run_clomp script so that the
threads are load balanced for every thread count.

Page 7 of 8
(UCRL-MI-234771)

Figure 5 Initial run_clomp output on an 8 processor Opteron node.

Figure 6 shows the output files created by the run_clomp script. The base name for all the files is
formed using the host name of the node run on and an integer ID (1 in Fig. 6) that is used to
avoid name collisions (the run_clomp script figures out the next available ID to use, up to 1000).
The .full files contain the verbose output of the CLOMP benchmark. The .summary files contain
the same information in a comma-delimited format that can be easily read into spreadsheets. The
.env file contains the environment used to run the benchmark The key.full and key.summary files
hold the results for the “key” runs, and the 6400zones, etc., files hold the results for each total
zone size. If you are submitting results to us, please send us all these files for the run you want us
to evaluate.

Zeus8: ./run_clomp clomp_icc_zeus8 8 100

Starting CLOMP run suite on zeus8 at Thu Sep 13 22:52:05 PDT 2007
 Executable name: clomp_icc_zeus8
 Max Threads: 8
 Time Scale: 100
 Output Base Name: CLOMP_zeus8_1
 Target Parts: 64
 Target Zones: 6400
 Max Zone Scaling: 10000
Zone Scale Factor: 10

Writing CLOMP environment into CLOMP_zeus8_1.env

Starting key CLOMP runs at Thu Sep 13 22:52:05 PDT 2007
Writing full output into CLOMP_zeus8_1_key.full

Running clomp_icc_zeus8 8 -1 64 100 32 1 100

 Key measurements from above run (if off, check environment):
 OMP Barrier us/Loop: 2.23321 (wallclock, in microseconds)
 Bestcase OMP Speedup: 7.34
 Static OMP Speedup: 3.97
 Static OMP Efficacy: 54.09% (of bestcase 5.48497 us/Loop)
 Static OMP Overhead: 4.65482 (versus bestcase, in us/Loop)

Running clomp_icc_zeus8 8 -1 64 1000 32 1 100

 Key measurements from above run (if off, check environment):
 OMP Barrier us/Loop: 1.6396 (wallclock, in microseconds)
 Bestcase OMP Speedup: 29.60
 Static OMP Speedup: 26.66
 Static OMP Efficacy: 90.05% (of bestcase 54.9166 us/Loop)
 Static OMP Overhead: 6.06974 (versus bestcase, in us/Loop)

<snip>

Page 8 of 8
(UCRL-MI-234771)

Figure 6 Listing of the output files produced by the run_clomp script on zeus8.

Interpreting the Output
The output of the CLOMP benchmark is fairly descriptive (pseudo code of what is being
measured in printed in the full CLOMP output) and will not be described in detail here. As
mentioned above, the most important performance result of interest is the speedup for the
OpenMP static schedule case over the serial run for ~6400 zones (with ~64 zone partitions) with
the number of threads equal to the number of processor cores. Ideally, that speedup should be
close to the number of threads used. All the other output and run variations are used to explain
and clarify this result and to show some of the potential the cache, memory contention, and
NUMA effects on thread performance. The output format is designed so that all the runs on a
specific node can be concatenated into one file and still be understandable (at the end of each run
there is a spreadsheet-friendly summary of the run that can be used to import the data into a
spreadsheet for analysis). The run_clomp script provided does this file concatenation and
spreadsheet-friendly summary extraction for you.

CLOMP_zeus8_1.env
CLOMP_zeus8_1_64000000zones.full
CLOMP_zeus8_1_64000000zones.summary
CLOMP_zeus8_1_6400000zones.full
CLOMP_zeus8_1_6400000zones.summary
CLOMP_zeus8_1_640000zones.full
CLOMP_zeus8_1_640000zones.summary
CLOMP_zeus8_1_64000zones.full
CLOMP_zeus8_1_64000zones.summary
CLOMP_zeus8_1_6400zones.full
CLOMP_zeus8_1_6400zones.summary
CLOMP_zeus8_1_key.full
CLOMP_zeus8_1_key.summary

