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CLOMP 

Summary Version 
1.0 

Purpose of Benchmark 
CLOMP is the C version of the Livermore OpenMP benchmark developed to measure OpenMP 
overheads and other performance impacts due to threading in order to influence future system 
designs. Current best-in-class implementations of OpenMP have overheads at least ten times 
larger than is required by many of our applications for effective use of OpenMP. For these 
applications to effectively use OpenMP, they require thread barrier latencies of less than 200 
processor cycles and total OpenMP “parallel for” overheads of less than 500 processor cycles. 
The CLOMP benchmark can be used to demonstrate the need for new techniques for reducing 
thread overheads and to evaluate the effectiveness of these new techniques. The CLOMP 
benchmark is highly configurable and can also be used to evaluate the handling of other well-
known threading issues such as NUMA memory layouts, cache effects, and memory contention 
that also can significantly affect performance. 

Overview, Characteristics, and Parameters of Benchmark 
The CLOMP benchmark is configured entirely at run time using the command-line parameters. 
The usage information for the CLOMP benchmark that is output when it is run with no 
arguments is shown in Fig. 1. The numThreads argument specifies the number of OpenMP 
threads to use when running the benchmark, where the special value ‘-1’ specifies that the 
default number of OpenMP threads (usually the number of processors or the number of threads 
set via OMP_NUM_THREADS). The allocThreads argument specifies how many threads 
will be used to allocate the memory. The typical values for allocThreads are 1 and -1. 
Setting allocThreads to 1 emulates what most of our codes do, which allocates all the 
memory touched in the main thread (which causes poor thread memory layout on systems that 
exhibit NUMA effects). Setting allocThreads to -1 (or the number of threads used) threads 
the allocation using OpenMP the same way the calculations are threaded so that the same threads 
will allocate the memory as use them, thereby improving thread memory layout. (This is not 
currently guaranteed to be true by OpenMP, but it appears to be true for some OpenMP 
implementations). Although ideally programs would allocate all the memory a thread touches in 
that same thread, in practice this is often very hard to do. Thus, we are interested in the 
performance difference caused by whether the allocations themselves were done serially or in 
parallel. 

The numParts, zonesPerPart, zoneSize, and flopScale command-line arguments in 
Fig. 1 will be described more fully below as we describe the mesh and computer kernels of the 
CLOMP benchmark. The last command line argument, timeScale, is provided as a 
convenience for those running the CLOMP benchmark; it scales the run-time of the benchmark. 
A timeScale of 100 was designed to run for between 5 and 30 seconds for a serial run of the 
kernel (depends on mesh size and machine speed) that should provide reasonably accurate 
timings given the resolution of the timers used. A timeScale of 1 runs the benchmark very 
quickly to identify scaling problems and correctness but probably inaccurate timings. Using a 
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timeScale of 100 is probably a reasonable, yet still short, run on most current machines but 
may have to be adjusted for machine speed. 

Figure 1  Usage information for CLOMP benchmark. 
 
The CLOMP benchmark creates a simple unstructured mesh (see Fig. 2) that is configured via 
the command-line parameters numParts, zonesPerPart, and zoneSize that were shown in 
Fig. 1. The mesh consists of “numParts” independent zone partitions where each zone partition 
contains “zonesPerPart” zones. The CLOMP benchmark explicitly allocates all the zones (e.g., 
Zone01, Zone02, Zone 03, and Zone04 in Fig. 2) in each zone partition (e.g., Part0 in Fig. 2) in a 
continuous block, so that all the partition’s zones are immediately adjacent to each other (even 
though they are accessed via a linked list). This zone allocation strategy should allow prefetching 
to work well while traversing each partition’s zones. The amount of memory allocated for each 
zone is set by the zoneSize parameter (shown in Fig. 1), although there is a system dependent 
minimum size that is usually 32 bytes. Only the first approximately 32 bytes of each zone is 
actually used, and the zoneSize parameter is provided mainly as a way to increase the memory 
footprint of the mesh without creating more work. 

Usage: ./clomp_icc_atlas36 numThreads allocThreads numParts \ 
           zonesPerPart zoneSize flopScale timeScale 
  
  numThreads: Number of OpenMP threads to use (-1 for system default) 
  allocThreads: #threads when allocating data (-1 for numThreads) 
  numParts: Number of independent pieces of work (loop iterations) 
  zonesPerPart: Number of zones in the first part (3 flops/zone/part) 
  zoneSize: Bytes in zone, only first ~32 used (512 nominal, >= 32 valid) 
  flopScale: Scales flops/zone to increase memory reuse (1 nominal, >=1 Valid) 
  timeScale: Scales target time per test (10-100 nominal, 1-10000 Valid) 
  
Some interesting testcases (last number controls run time): 
           Target input:    ./clomp_icc_atlas36 -1 1 64 100 32 1 100 
   Target/NUMA friendly:    ./clomp_icc_atlas36 -1 -1 64 100 32 1 100 
         Cache friendly:    ./clomp_icc_atlas36 -1 1 64 1 32 100 100 
  Cache/OpenMP friendly:    ./clomp_icc_atlas36 -1 1 64 1 32 1000 100 
        Mem-bound input:    ./clomp_icc_atlas36 -1 1 64 10000 512 1 100 
Mem-bound/NUMA friendly:    ./clomp_icc_atlas36 -1 -1 64 10000 512 1 100 
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Figure 2  CLOMP unstructured mesh data structures for numParts = 4 and zonesPerPart=4. 
 
No real or useful physics is done by the CLOMP benchmark, but a configurable amount of 
physics-like work is done in each zone during each “physics cycle,” and the benchmark is 
designed to produce bit-for-bit reproducible (and predictable) answers no matter how many 
threads are used to calculate the results. The CLOMP benchmark uses this property (and other 
techniques) to detect many common threading errors. The thread-parallel kernel for the CLOMP 
benchmark is shown in Fig. 3 with OpenMP directives for static scheduling. The 
calc_deposit() call in Fig. 3 represents an MPI exchange of data (although currently no MPI 
is done in CLOMP) and must be called from a single-threaded region and must be called after 
the previous thread parallel work is done. All the computational work is done in the 
update_part(), and it is the for loop around update_part() that is the target for threading. 

 
Figure 3  CLOMP thread-parallel kernel with OpenMP directives and static scheduling. 
 
Although the focus of the CLOMP benchmark is the OpenMP kernel shown in Fig. 3, a 
simplified version of the compute kernel of update_part() is shown in Fig. 4 in order to 
explain the flopScale command-line parameter from Fig. 1. This update_part() kernel 
follows the linked list of zones in each zone partition and does a little bit of math on the zone’s 
value. Its purpose is to consume cycles in a configurable way that produces verifiable output, not 
to actually do anything useful. When flopScale is 1 (the desired target setting), each iteration 
of the outside zone traversal loop does (with a reasonable optimizer) two loads from the zone 
(zone->value, a double, and zone->nextZone, a pointer), does a double multiple, a double add, 
and a double subtract, and a double store to the zone (zone->value, a double). This memory 
access to flop ratio is representative of several interesting scientific calculations and can put a 

deposit = calc_deposit (); /* Sync, non-threadable */
#pragma omp parallel for private (pidx) schedule(static) 
for (pidx = 0; pidx < num_parts; pidx++) 
   update_part (partArray[pidx], deposit); 
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load on the memory system, especially prefetching logic of the memory system. By setting the 
flopScale parameter to 100 and reducing the mesh size by 100, one can get an input of 
approximately the same run time that is much less affected by the memory system. Using a value 
greater than 1 for flopScale is interesting only for explaining performance anomalies in the 
benchmark run when flopScale is set to 1. 

 
Figure 4  The non-threadable compute kernel of update_part(). 
 
The CLOMP benchmark measures the total overhead for static, dynamic, and manual OpenMP 
“parallel for” loop scheduling and the speedup achieved when performing a “physics cycle” on 
the specified unstructured mesh. The potential “best-case” speedup is also determined in order to 
provide an approximate upper bound on threaded performance and in order to be able to 
calculate an efficiency rating for the OpenMP implementation. By running the CLOMP 
benchmark with several different mesh sizes and thread configurations, the performance effect of 
OpenMP overheads, NUMA effects, cache and memory bandwidth and latency effects, and 
prefetching effectiveness can be clearly seen. The amount of work each benchmark OpenMP test 
performs is run-time configurable and is, by design, independent of mesh size, so that a wide 
range of CLOMP benchmark runs can be done quickly. 

Below we suggest some run configurations for CLOMP that have shown interesting results on 
the systems tested. There are probably many other useful configurations to try. 

Mechanics of Building Benchmark 
The CLOMP benchmark consists of one C file, clomp.c, and a Makefile that contains the 
compile line for a few compilers. You can either compile clomp.c directly with the desired 
compiler arguments to get good OpenMP performance or you can put the compile line in the 
Makefile. Running the Makefile with no arguments shows the compiler lines available. For 
example, make icc builds CLOMP with icc (assumed to be in your path) (on Linux), make 
xlc builds with xlc (on AIX), and make gcc4 uses gcc4 provided by some versions of Red Hat 
Linux. The Makefile encodes the name of the compiler and the node it is built on (for example, 
clomp_icc_atlas36). The executable built should be used for all the tests (no recompiling should 
be necessary) on that platform (i.e., even if on a different node of Atlas). If you are reporting 
results to us, please specify the compiler options uses to build CLOMP. 

Setting Up the OpenMP Environment 
On the few systems we have tested so far, additional system-specific and/or compiler-specific 
environment variables need to be set in order to get good thread performance. These 
environment variables were required to configure the threading system to maximize the 

for (zone = part->firstZone; zone != NULL; zone = zone->nextZone) 
{ 
 for (scale_count = 0; scale_count < flopScale; scale_count++) 
 { 
     deposit = remaining_deposit * deposit_ratio; 
     zone->value += deposit; 
     remaining_deposit -= deposit; 
 } 
} 
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performance of the threads in the CLOMP run instead of minimizing the cycles used by the 
threading system. These thread settings usually caused the threading system to no longer do 
thread yields but to instead spin-wait waiting for a resource. Also, these thread settings 
sometimes give threads strong processor affinity, bind threads to separate processors, or direct 
the operating system to use all the available processors to run threads instead of just a few. We 
found these settings by looking at the SPEC OpenMP benchmark results where all environment 
variables set have to be specified and/or by asking the vendors for suggestions. 

For example, on AIX with the xlc compiler, this environment variable had to be set for good 
performance: 

setenv XLSMPOPTS spins=0:yields=0 

On Linux with the icc compiler, this environment variable was very important for good 
performance: 

setenv KMP_BLOCKTIME 100000 

For both AIX/xlc and Linux/icc, there were other thread environment variables available to be 
set that didn’t affect performance in our tests but could be important for others (such as startproc 
and stride parameters for AIX/xlc and setting KMP_LIBRARY to turnaround for Linux/icc). 
With some settings, OMP_NUM_THREADS had to be set to the number of threads used in 
order to get good performance (OMP_NUM_THREADS was used by the thread binding 
system). 

If you are reporting benchmark results to us, please describe what environment variables were 
set and why. 

Mechanics of Running Benchmark 
The CLOMP benchmark should be run on a dedicated (idle) node with the appropriate thread 
performance environment variables set (described above). All the runs should be done on the 
same machine around the same time (if possible) because we have found memory layout to 
sometimes be different on different nodes of the same cluster. The benchmark can be run directly 
(as described in Fig. 1), but when doing a performance study, it can be useful to use the provided 
script “run_clomp” to run a suite of CLOMP runs and automatically create comma-delimited 
result summary files that can be loaded into a spreadsheet for creating result charts. The 
run_clomp script was designed to run the variations we have found useful during our CLOMP 
benchmarking runs. It requires about 2 hours to run (if the threading environment is set up 
properly) and about 2GB of memory. If the 2GB of node memory is not available, reducing the 
MAX_ZONE_SCALE=10000 setting (around line 97 of the run_clomp script) to 1000 should 
greatly reduce the memory requirements (and run-time requirements). There are other parameters 
starting at around line 90 of the script that control what CLOMP variations get run by the 
run_clomp script. 

One of the most important results for us is the Static OpenMP performance for around 6400 
zones total (the “target” input size), which is a reasonably large number of zones per node for 
many interesting applications when running a large parallel simulation, with numThreads equal 
to the total number of processor cores on the machine. The run_clomp script runs this variation 
and prints out its results first, so problems with the thread environment, etc., can be caught 
quickly and corrected before running all the other variations. If setting numThreads equal to the 
number of cores per processor yields better results, we are also interested in that result also. All 
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the other variations that the run_clomp script runs are designed to give insight into these results 
for the “target” input size (as well as measure some other system characteristics). Most of the 
run_clomp script variations use the -1 allocThreads setting in an attempt to maximize 
performance on systems with NUMA effects. Just two large runs are done with 
1 allocThread in order to show the performance impact of NUMA effects on the machine 
(without doubling the number of CLOMP runs performed). 

The run_clomp script takes three arguments: the executable_name to run, the maximum 
numThreads to run (typically the total number of processor cores on the node), and the 
timeScale factor to use (typically 100). Figure 5 shows the initial output from the script (it 
indicates every CLOMP run it is executing) for the executable “clomp_icc_zeus8” with runs up 
to eight threads and using a timeScale of 100. The first run of 

clomp_icc_zeus8 8 -1 64 100 32 1 100 

is the “target input” run that is representative of many of our applications (6400 zones) and 
which is needed in order to run efficiently with OpenMP (as described earlier). This is one of the 
most important performance results for us. In this case, the “Static OMP Speedup” was 3.97, 
instead of the desired 8. This is expected (but not desired) on many current systems (we rarely 
see over 4X for eight threads). If threading environment variables are not set properly, we often 
see a slowdown for this run (and we stop run_clomp and fix things before continuing). The next 
run with 10X more zones than the “target input” shows a superlinear speedup due to cache 
effects, but the “Static OMP Speedup” of 26.66 is still less than the “Bestcase OMP Speedup” of 
29.60 due to OpenMP overheads. These “key” CLOMP runs continue up to 64 parts and 
1000000 zones per part (64,000,000 total zones) with the maximum threads specified (eight in 
this case). 

After the “key” runs, the run_clomp script then does CLOMP runs at each total zone size with 1 
to numThreads threads to measure how the performance results vary with number of threads. 
The numParts and zonesPerPart settings are adjust by the run_clomp script so that the 
threads are load balanced for every thread count. 
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Figure 5  Initial run_clomp output on an 8 processor Opteron node. 
 
Figure 6 shows the output files created by the run_clomp script. The base name for all the files is 
formed using the host name of the node run on and an integer ID (1 in Fig. 6) that is used to 
avoid name collisions (the run_clomp script figures out the next available ID to use, up to 1000). 
The .full files contain the verbose output of the CLOMP benchmark. The .summary files contain 
the same information in a comma-delimited format that can be easily read into spreadsheets. The 
.env file contains the environment used to run the benchmark The key.full and key.summary files 
hold the results for the “key” runs, and the 6400zones, etc., files hold the results for each total 
zone size. If you are submitting results to us, please send us all these files for the run you want us 
to evaluate. 
 

Zeus8: ./run_clomp clomp_icc_zeus8 8 100
 
Starting CLOMP run suite on zeus8 at Thu Sep 13 22:52:05 PDT 2007 
  Executable name: clomp_icc_zeus8 
      Max Threads: 8 
       Time Scale: 100 
 Output Base Name: CLOMP_zeus8_1 
     Target Parts: 64 
     Target Zones: 6400 
 Max Zone Scaling: 10000 
Zone Scale Factor: 10 
 
Writing CLOMP environment into CLOMP_zeus8_1.env 
  
Starting key CLOMP runs at Thu Sep 13 22:52:05 PDT 2007 
Writing full output into CLOMP_zeus8_1_key.full 
  
Running clomp_icc_zeus8 8 -1 64 100 32 1 100 
  
 Key measurements from above run (if off, check environment): 
  OMP Barrier  us/Loop: 2.23321 (wallclock, in microseconds) 
 Bestcase OMP  Speedup: 7.34 
   Static OMP  Speedup: 3.97 
   Static OMP Efficacy: 54.09% (of bestcase 5.48497 us/Loop) 
   Static OMP Overhead: 4.65482 (versus bestcase, in us/Loop) 
  
Running clomp_icc_zeus8 8 -1 64 1000 32 1 100 
  
 Key measurements from above run (if off, check environment): 
  OMP Barrier  us/Loop: 1.6396 (wallclock, in microseconds) 
 Bestcase OMP  Speedup: 29.60 
   Static OMP  Speedup: 26.66 
   Static OMP Efficacy: 90.05% (of bestcase 54.9166 us/Loop) 
   Static OMP Overhead: 6.06974 (versus bestcase, in us/Loop) 
 
<snip> 
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Figure 6  Listing of the output files produced by the run_clomp script on zeus8. 
 

Interpreting the Output 
The output of the CLOMP benchmark is fairly descriptive (pseudo code of what is being 
measured in printed in the full CLOMP output) and will not be described in detail here. As 
mentioned above, the most important performance result of interest is the speedup for the 
OpenMP static schedule case over the serial run for ~6400 zones (with ~64 zone partitions) with 
the number of threads equal to the number of processor cores. Ideally, that speedup should be 
close to the number of threads used. All the other output and run variations are used to explain 
and clarify this result and to show some of the potential the cache, memory contention, and 
NUMA effects on thread performance. The output format is designed so that all the runs on a 
specific node can be concatenated into one file and still be understandable (at the end of each run 
there is a spreadsheet-friendly summary of the run that can be used to import the data into a 
spreadsheet for analysis). The run_clomp script provided does this file concatenation and 
spreadsheet-friendly summary extraction for you. 

CLOMP_zeus8_1.env 
CLOMP_zeus8_1_64000000zones.full 
CLOMP_zeus8_1_64000000zones.summary 
CLOMP_zeus8_1_6400000zones.full 
CLOMP_zeus8_1_6400000zones.summary 
CLOMP_zeus8_1_640000zones.full 
CLOMP_zeus8_1_640000zones.summary 
CLOMP_zeus8_1_64000zones.full 
CLOMP_zeus8_1_64000zones.summary 
CLOMP_zeus8_1_6400zones.full 
CLOMP_zeus8_1_6400zones.summary 
CLOMP_zeus8_1_key.full 
CLOMP_zeus8_1_key.summary 


