Use Cases for Large Memory
Appliance/Burst Buffer

H Lawrence Livermore
National Laboratory

Rob Neely
Bert Still

A
- e

lan Karlin P ﬁ,m---._..ti e [.

Adam Bertsch

s "R y [4 - " l
oy 1 2 e w— .
2 = - e R “ii
| TR B
s Tt 3

LLNL-PRES-648613

This work was performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.
Lawrence Livermore National Security, LLC

Assumptions in these use cases

= Large/huge amounts of memory are directly available to
applications.

= Access (Iatency and bandW|dth) to this memory is slower than
to regular “main memory”.

= Memory may or may not be persistent (few of these use-
cases rely on it)

= There may or may not be dedicated compute resources near/
In the memory

= Memory is possibly shared by multiple compute nodes

= Access is either via block device interface or byte addressed
interface (use-case dependent)

Each use case that follows lists a “priority”. This is our best attempt at guessing
how likely we would be use pursue this case, and is the opinion of LLNL only.

w Lawrence Livermore National Laboratory LLNL-PRES-648613 LLNL ASC Co-design Project l VNA h)-“ 4

Use case #1: Defensive 1/O (checkpointing)

Priority: 10/10

Use for fast checkpointing using standard techniques

= Use LLNL SCR (Scalable Checkpoint-Restart) package or System API

System API must maintain low barrier to entry for apps
SCR uses Memory-mapped files

= Drain every Nth checkpoint to filesystem asynchronously
= Use for regular defensive 1/0O

= |f compute were attached, could have a user-defined management
thread running asynchronously

= Allows for rapid rollback/recovery to be implemented in code

Pros: Cons:

* Concept and software (SCR) Taking advantage of non-
exist today volatile properties would

* Low barrier to entry for apps require re-launch on same set

* Non-volatile memory allows of nodes (or clever shuffling/
for potential fast restart if job unified view of data)
is re-launched * POSIX filesystem security

required to protect NV data

w : : — W
Lawrence Livermore National Laboratory LLNL-PRES-648613 LLNLASC Co-design Project /I WA’ ARy 2

Use case #2: Visualization 1/O
Priority: 9/10

Use for fast output using standard techniques
= Drain plot files to filesystem asynchronously

= |f compute were attached, could have a user-defined management
thread (e.g. generate movie frame) running asynchronously

= Allows for asynchronous use of permanent storage

Pros: Cons:
* Should co-exist with defensive * Managing asynchronous
/O case computation (if available)
* Asynchronous use of could add complexity to
permanent storage improves workflow
ratio of time spent on
compute

* Asynchronous computation (if
available) could save a lot of
time and space in generating

plots

4\

. . " g% 38
w Lawrence Livermore National Laboratory LLNL-PRES-648613 LLNL ASC Co-design Project l VNA Ay

Use case #3: Accelerated reads
Priority: 8/10
Use for fast application startup using standard read techniques

= Stage data in advance of application requirements/launch

= Use for large or commonly read data, such as
« Shared libraries
« Input decks
- Material databases

Pros: Cons:

* Probably a low barrier to * Not clear how storage
entry for apps management would be

* Some effort in place handled (staging, persistence,
(SPINDLE) at LLNL to ...)

automate some of this for
dynamic libraries

W Lawrence Livermore National Laboratory LLNL-PRES-648613 LLNL ASC Co-design Project l VNA /\)-“

Use case #4: In-situ visualization

Priority: 6/10

Do “on the fly” staged visualization and/or analysis

= Keep copy of application state in memory for in-situ processing

= Feature extraction / topological analysis

= Preprocessing or data reduction before writing to long term storage
= Create movie frames asynchronously while calculation continues

= Pause simulation and examine

= |f compute is available on storage, process asynchronously

Pros: Cons:
* Existing research (e.g. Vislt) * Asynchrony provides
could take advantage performance gains, but adds
* Greatly reduces amount of complexity
state written to disk * Research required before
production use

w Lawrence Livermore National Laboratory LLNL-PRES-648613 LLNL ASC Co-design Project l VNA h)-“

Use case #5: Data lookup server
Priority: 4/10

Storage of large shared databases/tables

= Easily allow sharing of large data tables (e.g. EOS, cross-sections,
opacities) across multiple nodes

= With attached compute, can do calculations (e.g. interpolations)
locally and minimize data motion

= Large storage allows for additional pre-calculation of lookup
coefficients, derivatives, etc... Faster lookup times

Pros: Cons:

* Clear breakdown of client/ * Bursty access will align across
server roles — well-understood nodes in an SPMD model.
programming model * Potential for hot spots and/or

* Tables could be preinitialized not enough compute
and kept in memory across May not be enough room to
runs — avoid reinitialization overlap request/use to make

| costs. async access pay off

- - i N g%
w Lawrence Livermore National Laboratory LLNL-PRES-648613 LLNL ASC Co-design Project ///IVWA'“A”}M‘% 6

Use case #6: Large out-of-core storage
Priority: 3/10
Use as extension of main memory

= Allow for greater physics fidelity
- For example, greatly increase the number of particles in a Monte Carlo simulation,
staging them into “near” memory in a pipelined fashion

= “Near” memory becomes another level of cache — could be managed
automatically through the OS via small pages

- E.g DI-MMAP project at LLNL

= Reduce dynamic memory management

« Just keep temporary arrays around
- Malloc/free are slow and usually done in serial (non-threaded) sections of code

Pros: Cons:

* Memory-capacity intensive * Programmer-managed placement
applications not required to and movement between memory is
strong-scale as much as-yet undefined

* Cache-approach would be * Many problems will want additional
largely invisible to the user compute resources to go with all that

additional memory

. . \ J g%
w Lawrence Livermore National Laboratory LLNL-PRES-648613 LLNL ASC Co-design Project l VNA h)-“ 4

Use case #7: Speculative Execution
Priority: 2/10

Keep micro-checkpoints in memory to support transaction-like
rollback

= Most multi-physics codes have physics-based triggers that will
cause the code to self-abort. E.g.
« Over-advection of materials
- Failure to converge in a solver

= Allowing a code to rollback to an earlier part of the timestep would
allow for a re-try
« E.g. Loosen constraints on the problem, reduce timestep, etc...

Pros: Cons:
* More robust code behavior * Memory capacity may not be
* Much smaller and faster than what’s preventing us from
a full checkpoint/restart doing this today. It’s just
simply hard to implement

w Lawrence Livermore National Laboratory LLNL-PRES-648613 LLNL ASC Co-design Project l VNA h)-“

Use case #8: Master task [worker queue model
Priority: 1/10

Keep state in NVRAM, fire off worker-tasks on nodes

= Task queue managed on NVRAM node — assumes some level of

compute
= Potentially good model for older/legacy codes that did lots of work
on task 0
Pros: Cons:
* Good for priority task queue e Tasks must be long-running
designed software enough to absorb latency cost

of spawning
 Still must manage distributed
state of task queue at scale

‘ Lawrence Livermore National Laboratory LLNL-PRES-648613 LLNL ASC Co-design Project l VNA /“’)-‘ 9

Open Questions

= How does one access data in NVRAM?
« Block or byte addressable?
« Memory map?
« Other?

= What is the security model, to ensure persistent data in NVRAM can be
accessed by the user in subsequent runs, but not by other users?

« Perhaps solvable with block-storage via file system permissions. Much harder problem
for byte-addressable storage models

« This is a big-deal issue for machines running in a classified environment

= What is the potential impact of accessing data in a memory space largely
dedicated to another user?

= What's a notional ratio of memory between “near” and “far’?

= |f we use NVRAM simply as additional capacity without commensurate
boost in compute, aren’t we greatly exacerbating the data motion / memory
bandwidth bottleneck?

= For the UQ example, what's the advantage over having a global view of the
data set on disk?

. . \ J g%
w Lawrence Livermore National Laboratory LLNL-PRES-648613 LLNL ASC Co-design Project l VNA h)-“ 10

