CLOMP

Summary Version
1.2
Purpose of Benchmark

CLOMP isthe C version of the Livermore OpenM P benchmark devel oped to measure OpenM P
overheads and other performance impacts due to threading. For simplicity, it does not use MPI
by default but it is expected to be run on the resources a threaded MPI task would use (e.g., a
portion of a shared memory compute node). As of CLOMP version 1.2, compiling with
-DWITH_MPI alows packing one or more nodes with CLOMP tasks and having CLOMP report
OpenMP performance for the slowest MPI task. On current systems, the strong scaling
performance results for 4, 8, or 16 threads are of the most interest. Suggested weak scaling
inputs are provided for evaluating future systems.

Char acteristics of Benchmark

CLOMP starget input approximates atypical scientific application inner loop workload under
strong scaling conditions. The overall speedup and implied overhead of several OpenMP
scheduling algorithms are then measured. Most current OpenM P benchmarks tolerate OpenM P
overheads several orders of magnitude higher than is necessary in order to get reasonable
performance out of threading loops with just afew hundred thousand cycles of work in them. In
order to get good performance with CLOMP starget input, and with many of our scientific
applications, it is critical for there to be hardware support for threading and for the OpenM P
compilers and libraries to be implemented to effectively use this OpenM P-accel erating hardware.
The CLOMP benchmark can be used to demonstrate the need for new techniques for reducing
thread overheads and to eval uate the effectiveness of these new techniques. The CLOMP
benchmark is highly configurable and can also be used to evaluate the handling of other well-
known threading issues such as NUMA memory layouts, cache effects, and memory contention
that also can significantly affect performance.

Examples of OpenMP Hardware Support

Examples of OpenMP hardware support in current systems include support for atomic operations
and locking operations in L2 cache and mechanism for efficiently distributing work to alarge
number of threads. For today's systems that synchronize threads thru main memory, current best-
in-class implementations of OpenMP have overheads at least ten times larger than is required by
many of our applications for effective use of OpenMP. For these applications to most effectively
use OpenMP with 8 threads per MPI task, they require thread barrier latencies on the order of
200 processor cycles and total OpenMP “parallél for” overheads on the order of 500 processor
cycles on high performance systems. With a single read from main memory often taking several
hundred cycles, it is clearly impossible to achieve these overhead goals without specialized
hardware support.

Page 1 of 6
(UCRL-MI-234771)

Parameters of Benchmark

The CLOMP benchmark is configured entirely at run time using the command-line parameters.
The usage information for the CLOMP Version 1.2 benchmark that is output when it is run with
no argumentsis shown in Fig. 1. The numThreads argument specifies the number of OpenMP
threads to use when running the benchmark, where the special value *-1' specifies that the
default number of OpenMP threads (usually the number of processors or the number of threads
set viaOMP_NUM_THREADS). The allocThreads argument specifies how many threads
will be used to allocate the memory. Thetypical valuesfor allocThreads arel and -1.
Setting allocThreads to 1 emulates what most of our codes do, which allocates al the
memory touched in the main thread (which causes poor thread memory layout on systems that
exhibit NUMA effects). Setting allocThreads to -1 (or the number of threads used) threads
the allocation using OpenM P the same way the calculations are threaded so that the same threads
will allocate the memory as use them, thereby improving thread memory layout. (Thisis not
currently guaranteed to be true by OpenMP, but it appears to be true for some OpenMP
implementations). Although ideally programs would allocate al the memory athread touchesin
that same thread, in practice thisis often very hard to do. Thus, we are interested in the
performance difference caused by whether the allocations themselves were done serially or in
parallel.

ThenumParts, zonesPerPart, zoneSize, and £ lopScale command-line argumentsin
Fig. 1 will be described more fully below as we describe the mesh and computer kernels of the
CLOMP benchmark. The last command line argument, t imeScale, isprovided asa
convenience for those running the CLOMP benchmark; it scales the run-time of the benchmark.
A timeScale of 100 was designed to run for between 5 and 30 seconds for a serial run of the
kernel (depends on mesh size and machine speed) that should provide reasonably accurate
timings given the resolution of the timersused. A timeScale of 1 runsthe benchmark very
quickly to identify scaling problems and correctness but probably inaccurate timings. Using a
timeScale Of 100 is probably areasonable, yet still short, run on most current machines but
may have to be adjusted for machine speed.

Page 2 of 6
(UCRL-MI-234771)

Usage: clomp numThreads allocThreads numParts \
zonesPerPart zoneSize flopScale timeScale

New in Version 1.2: Compile with -DWITH MPI to generate clomp mpi

numThreads: Number of OpenMP threads to use (-1 for system default)
allocThreads: #threads when allocating data (-1 for numThreads)

numParts: Number of independent pieces of work (loop iterations)
zonesPerPart: Number of zones in the first part (3 flops/zone/part)
zoneSize: Bytes in zone, only first ~32 used (512 nominal, >= 32 valid)
flopScale: Scales flops/zone to increase memory reuse (1 nominal, >=1 Valid)
timeScale: Scales target time per test (10-100 nominal, 1-10000 Valid)

Some interesting testcases (last number controls run time):

Target input: clomp 16 1 16 400 32 1 100
Target/NUMA friendly: clomp 16 -1 16 400 32 1 100

Weak Scaling Target: clomp N -1 N 400 32 1 100

Weak Scaling Huge: clomp N -1 N 6400 32 1 100
Strong Scaling Target: clomp -1 -1 1024 10 32 1 100
Mem-bound input: clomp N 1 N 640000 32 1 100
Mem-bound/NUMA friendly: clomp N -1 N 640000 32 1 100

MPI/OMP Hybrid Target: (mpirun -np M) clomp mpi 16 1 16 400 32 1 100

Figure 1 Usage information for CLOMP benchmark.

The CLOMP benchmark creates a simple unstructured mesh (see Fig. 2) that is configured via
the command-line parameters numParts, zonesPerPart, and zoneSize that were shown in
Fig. 1. The mesh consists of “numParts’ independent zone partitions where each zone partition
contains “zonesPerPart” zones. The CLOMP benchmark explicitly alocates al the zones (e.g.,
Zone01, Zone02, Zone 03, and Zone04 in Fig. 2) in each zone partition (e.g., PartOin Fig. 2) ina
continuous block, so that all the partition’s zones are immediately adjacent to each other (even
though they are accessed via alinked list). This zone allocation strategy should allow prefetching
to work well while traversing each partition’s zones. The amount of memory allocated for each
zone is set by the zonesize parameter (shown in Fig. 1), athough there is a system dependent
minimum size that is usually 32 bytes. Only the first approximately 32 bytes of each zoneis
actually used, and the zonesize parameter is provided mainly as away to increase the memory
footprint of the mesh without creating more work.

Page 3 of 6
(UCRL-MI-234771)

Part0 Zonel0l Zone02 Zone03 Zone(04
FirstZone pNextzone pNextZone pNextzone pNextZone
PartData ZoneData ZoneData ZoneData ZoneData
Partl Zonell Zonel2 Zonel3 Zonel4
partArray[4] FirstZone pNextZone| p/NextZone| pNextZonel ,[NextZone
PartData ZoneData ZoneData ZoneData ZoneData
PartPtr0
Part2 Zone2l Zone22 Zone23 Zone24
PartPtrl FirstZone pNextZone| plNextZone| p[NextZone| piNextZone
PartData ZoneData ZoneData ZoneData ZoneData
PartPtr2
PartPtr3 P
"lpart3 Zone3l Zone32 Zone33 Zone34
FirstZone pNextZone pNextZone pNextZone pNextZone| o
PartData ZoneData ZoneData ZoneData ZoneData

Figure 2 CLOMP unstructured mesh data structures for numParts = 4 and zonesPerPart=4.

No real or useful physicsis done by the CLOMP benchmark, but a configurable amount of
physics-like work is done in each zone during each “physics cycle,” and the benchmark is
designed to produce bit-for-bit reproducible (and predictable) answers no matter how many
threads are used to calculate the results. The CLOMP benchmark uses this property (and other
techniques) to detect many common threading errors. The thread-parallel kernel for the CLOMP
benchmark is shown in Fig. 3 with OpenMP directives for static scheduling. The

calc deposit () calinFig. 3 representsan MPI exchange of data (although currently no MPI
isdone in the timing sections CLOMP, even with -DWITH_MPI) and must be called from a
single-threaded region and must be called after the previous thread parallel work is done. All the
computational work isdoneintheupdate part (), anditisthefor loop around

update part () that isthetarget for threading.

deposit = calc_deposit (); /* Sync, non-threadable */
#ipragma omp parallel for private (pidx) schedule(static)
for (pidx = 0; pidx < num parts; pidx++)

update part (partArrayl[pidx], deposit);

Figure 3 CLOMP thread-parallel kernel with OpenMP directives and static scheduling.

Although the focus of the CLOMP benchmark is the OpenMP kernel shownin Fig. 3, a
simplified version of the compute kernel of update part () isshownin Fig. 4in order to
explain the £ lopScale command-line parameter from Fig. 1. Thisupdate part () kernel
follows the linked list of zones in each zone partition and does alittle bit of math on the zone's
value. Its purposeis to consume cycles in a configurable way that produces verifiable output, not
to actually do anything useful. When f1opscale is1 (the desired target setting), each iteration
of the outside zone traversal loop does (with a reasonabl e optimizer) two loads from the zone
(zone->value, a double, and zone->nextZone, a pointer), does a double multiple, a double add,
and a double subtract, and a double store to the zone (zone->value, a double). This memory

Page 4 of 6
(UCRL-MI-234771)

access to flop ratio is representative of several interesting scientific calculations and can put a
load on the memory system, especially prefetching logic of the memory system. By setting the
flopScale parameter to 100 and reducing the mesh size by 100, one can get an input of
approximately the same run time that is much less affected by the memory system. Using avalue
greater than 1 for f1opScale isinteresting only for explaining performance anomaliesin the
benchmark run when f1opScale issetto 1.

for (zone = part->firstZone; zone != NULL ; zone = zone->nextZone)
{
for (scale_count = 0; scale_count < flopScale; scale_count++)
{
deposit = remaining_deposit * deposit_ratio;
zone->value += deposit;
remaining_deposit -= deposit;
}
}

Figure 4 The non-threadable compute kernel of update part().

The CLOMP benchmark measures the total overhead for static, dynamic, and manua OpenMP
“parallel for” loop scheduling and the speedup achieved when performing a “physics cycle’ on
the specified unstructured mesh. The potential “best-case” speedup is al'so determined in order to
provide an approximate upper bound on threaded performance and in order to be able to
calculate an efficiency rating for the OpenM P implementation. By running the CLOMP
benchmark with several different mesh sizes and thread configurations, the performance effect of
OpenMP overheads, NUMA effects, cache and memory bandwidth and latency effects, and
prefetching effectiveness can be clearly seen. The amount of work each benchmark OpenMP test
performsis run-time configurable and is, by design, independent of mesh size, so that awide
range of CLOMP benchmark runs can be done quickly.

Below we suggest some run configurations for CLOMP that have shown interesting results on
the systems tested. There are probably many other useful configurationsto try.

Mechanics of Building Benchmark

The CLOMP benchmark consists of one C file, clomp.c, and a Makefile that contains the
compile line for afew compilers, and an example script run_clomp.bgq of 19 interesting run
configurations. Y ou can either compile clomp.c directly with the desired compiler arguments to
get good OpenM P performance or you can put the compile line in the Makefile. Running the
Makefile with no arguments shows the compiler lines available. For example, make icc builds
CLOMP with icc (assumed to be in your path) (on Linux), make gcc buildswith gcc, etc. If
you are reporting results to us, please specify the compiler options uses to build CLOMP.

Setting Up the OpenMP Environment

On the few systems we have tested so far, additional system-specific and/or compiler-specific
environment variables need to be set in order to get good thread performance. These
environment variables were required to configure the threading system to maximize the
performance of the threads in the CLOMP run instead of minimizing the cycles used by the
threading system. These thread settings usually caused the threading system to no longer do

Page 5 of 6
(UCRL-MI-234771)

thread yields but to instead spin-wait waiting for aresource. Also, these thread settings
sometimes give threads strong processor affinity, bind threads to separate processors, or direct
the operating system to use all the available processorsto run threads instead of just afew. We
found these settings by looking at the SPEC OpenM P benchmark results where al environment
variables set have to be specified and/or by asking the vendors for suggestions.

For example, on BGQ with the xIc compiler, these two environment variables had to be set for
the best performance:

setenv OMP_WAIT POLICY ACTIVE
setenv BG_SMP_FAST WAKEUP YES

On Linux with older icc compiler versions, this environment variable was very important for
good performance:

setenv KMP_ BLOCKTIME 100000

For both BGQ/xIc and Linux/icc, there were other thread environment variables available to be
set that didn’t affect performance in our tests but could be important for others (such setting
KMP_LIBRARY to turnaround for Linux/icc). With some settings, OMP_NUM_THREADS
had to be set to the number of threads used in order to get good performance
(OMP_NUM_THREADS was used by the thread binding system).

If you are reporting benchmark results to us, please describe what environment variables were
set and why.

Mechanics of Running Benchmark

The CLOMP benchmark should be run on a dedicated (idle) node with the appropriate thread
performance environment variables set (described above). All the runs should be done on the
same machine around the same time (if possible) because we have found memory layout to
sometimes be different on different nodes of the same cluster. The benchmark can be run directly
(asdescribed in Fig. 1), but when generating CORAL RFP results, it can be useful to modify the
provided example script “run_clomp.bgqg” to run a suite of CLOMP runs and automatically
create comma-delimited result summary files that can be loaded into the CORAL results
spreadsheet. The run_clomp.bgg script was designed to run 19 variations we have found most
useful during our CLOM P benchmarking runs on our current machines. The script comments
indicate which runs are for strong scaling performance, weak scaling performance, detecting
bandwidth limitations, detecting NUMA bandwidth limitations, and detecting hybrid
OpenMP/MPI performance issues. The comma-delimited value file run_clomp.CORAL_RFPis
designed to be easily loaded into a spreadsheet and then pasted into the CORAL RFP results
spreadsheset.

Interpreting the Output

The output of the CLOMP benchmark isfairly descriptive (pseudo code of what is being
measured in printed in the full CLOMP output) and will not be described in detail here. The
most important performance result of interest is the speedup for the OpenMP static schedule case
over the serial run for ~400 zones per thread with the number of threads equal to the number of
processor cores/threads dedicated to asingle MPI task. Ideally, that speedup should be close to
the number of threads used but is typically much lower due to current OpenM P overheads.

Page 6 of 6
(UCRL-MI-234771)

