
SNAP	-	SN	Application	Proxy	
	Standard	Performance	Testing	with	MPI	Only	and	MPI+OpenMP

Contacts Al	McPherson	(LANL)	–	mcpherson@lanl.gov	Jonathan	Robey	(LANL)	–	jrobey@lanl.gov	Joe	Zerr	(LANL)	–	rzerr@lanl.gov	Randy	Baker	(LANL)	–	rsb@lanl.gov		
SNAP Resources Email:	snap@lanl.gov	Website:	https://github.com/losalamos/snap		
Purpose
 These	test	problems	are	meant	to	gauge	system	performance	with	problems	typically	encountered	in	the	discrete	ordinates	transport	community.			This	benchmark	stresses	the	memory	subsystem	and	total	memory	capacity.		It	also	has	the	ability	to	use	newer	MPI	and	OpenMP	features,	such	as	nested	threads	and	thread	multiple	communication	when	available.		
Characteristics 	The	discrete	ordinates	transport	equation	is	notorious	for	memory	consumption.	A	spatially	3-D,	time-dependent	calculation	using	the	discrete	ordinates	proxy	app,	SNAP,	requires	the	storage	of	two	six-dimensional	arrays	whose	sizes	each	equal	the	number	of	spatial	cells	by	the	number	of	particle	energy	bins	by	the	number	of	discrete	ordinates	to	angularly	resolve	the	problem.	SNAP	uses	a	parallel	model	that	decomposes	the	spatial	dimension	over	a	distributed	memory	system	via	MPI.	Work	performed	in	loops	over	energy	groups	is	threaded.	And	angles	of	a	given	octant	are	vectorized	using	the	vector	instructions	sets	on	chips.		Typically,	transport	calculations	are	designed	with	the	competing	goals	of	properly	resolving	the	physics	of	the	problem	while	also	ensuring	that	the	needed	data	structures	will	fit	within	the	available	memory.	Included	with	this	benchmark	is	a	spreadsheet	with	a	sample	set	of	weak	scaling	problems	that	were	used	to	derive	the	figure	of	merit	(FOM)	for	SNAP.		The	problem	has	a	number	of	angles	and	energy	bins,	“groups,”	typical	of	current	application	space.		Twice	the	hardware	should	be	used	to	increase	the	number	of	spatial	cells	between	each	problem.	The	actual	spatial	bounds	are	fixed,	and	more	cells	yields	finer	spatial	resolution.		These	problems	have	been	sized	for	a	system	that	assumes	1	GB	memory	per	MPI	task.	

Importantly,	the	problems	being	run	should	take	up	only	approximately	half	the	available	memory	to	be	realistic	and	representative.			
Mechanics of Building Benchmark 	For	a	simple	build	edit	the	Makefile	to	the	appropriate	compiler	and	flags	for	your	system.		Then	type	‘make’	to	build.				For	a	more	complex	build	the	code	has	various	advanced	features	commented	out,	such	as	nested	threads	and	thread	multiple	communication.		Add	these	back	in	as	desired.		
Mechanics of Running Benchmark 	Use	the	appropriate	command	line	options	to	initiate	the	MPI	application,	set	the	number	of	processes,	set	the	number	of	threads,	point	at	the	SNAP	executable,	and	define	the	input	and	output	file	names.	See	the	table	below	for	guidance	on	changing	the	number	of	cells	with	increasing	core	count	(the	highlighted	row	indicates	the	problem	used	for	the	baseline	FOM).		 1. Small	problem:	use	the	single	core	problem	from	the	MPI-only	test	suite.	2. Medium	problem:	use	the	MPI-only	tests	and	change	the	“nthreads”	variable	as	desired	to	add	in	threads	for	a	parallel	calculation	using	hundreds	of	processes.	3. Large	CORAL	reference	(FOM	baseline)	problem:	follow	the	spreadsheet	for	weak	scaling	problems	and	add	in	threads	as	desired.	4. CORAL	problem:	modify	the	32768	MPI	rank	problem	to	increase	total	problem	size	by	a	factor	of	two.		The	suggested	modification	is	to	increase	group	count	to	80,	but	other	options,	such	as	doubling	the	number	of	angles	or	doubling	“ny”	will	have	the	same	result	on	problem	size.		To	increase	the	amount	of	strong	scaling,	either	up	the	number	of	MPI	ranks	or	number	of	threads	as	appropriate	for	your	system.			For	all	calculations,	please	ensure	the	input	“nx”	is	evenly	divisible	by	the	input	“ichunk,”	“ny”	by	“npey,”	and	“nz”	by	“npez.”	SNAP	will	abort	if	these	rules	are	not	met.		The	reported	“Grind	Time”	is	a	useful	measure	of	SNAP	performance.	It	is	the	time	to	compute	the	solution	for	one	phase	space	cell	(space,	angle,	and	energy)	in	a	single	iteration.	It	will	decrease	linearly	in	the	ideal	case,	but	deviate	from	the	ideal	due	to	communication	penalties	in	both	strong	and	weak	scaling	cases.		

MPI
Ranks nx ny nz Total cells ichunk npey npez nang ng nthreads

Total
Cores

16 32 32 32 32768 8 4 4 400 40 4 64
32 32 32 64 65536 8 4 8 400 40 4 128
64 32 64 64 131072 8 8 8 400 40 4 256

128 64 64 64 262144 8 8 16 400 40 4 512

	 Table	1	-	Input	parameters	used	for	baseline	runs	of	different	sizes		
input template
&invar
 nthreads=4
 Nnested=0
 npey=#
 npez=#
 ichunk=#
 ndimen=3
 nx=#
 Lx=4.8
 ny=#
 Ly=4.8
 nz=#
 Lz=4.8
 Nmom=3
 Nang=50
 Ng=400
 mat_opt=1
 src_opt=0
 timedep=1
 it_det=0
 Tf=0.04
 Nsteps=4
 iitm=5
 oitm=100
 epsi=1.E-4
 fluxp=0
 scatp=0
 Fixup=1
! soloutp=0 \

256 64 64 128 524288 8 16 16 400 40 4 1024
512 64 128 128 1048576 8 16 32 400 40 4 2048

1024 128 128 128 2097152 8 32 32 400 40 4 4096
2048 128 128 256 4194304 8 32 64 400 40 4 8192
4096 128 256 256 8388608 8 64 64 400 40 4 16384
8192 256 256 256 16777216 8 64 128 400 40 4 32768

16384 256 256 512 33554432 8 128 128 400 40 4 65536
32768 256 512 512 67108864 8 128 256 400 40 4 131072
65536 512 512 512 134217728 8 256 256 400 40 4 262144

131072 512 512 1024 268435456 8 256 512 400 40 4 524288

	
Verification of Results 	SNAP	has	been	designed	to	mimic	the	workflow	and	communication	patterns	of	the	LANL	transport	code	PARTISN.	However,	to	ensure	approval	for	open	source	status,	the	operators	have	been	modified,	meaning	the	same	problem	run	with	the	two	codes	will	not	produce	the	same	result.	Moreover,	some	numerical	instability	may	appear	with	SNAP	that	will	not	appear	in	PARTISN.		Fortunately,	steps	can	be	taken	to	create	a	base	set	of	reference	cases	for	SNAP	that	one	can	use	to	ensure	their	base	copy	built	correctly	or,	perhaps	more	valuably,	that	a	modified	SNAP	has	not	altered	the	solution	algorithms.	The	“qasnap”	directory	within	the	GitHub	repository	provides	some	simple	regression	tests	using	up	to	16	cores.	There	are	two	main	goals	of	this	approach.		 1. Because	the	solution	is	unphysical	and	unrealistic	to	begin	with,	one	should	attempt	to	use	base	SNAP	code	for	verifying	results	of	a	modified	SNAP.	2. Reference	SNAP	calculations	should	converge	and	provide	a	result	that	is	easily	compared	to	other	calculations	with	a	modified	SNAP.	Non-converging	results	can	still	be	useful	for	timing	measurements,	but	are	not	valuable	for	ensuring	any	modifications	have	not	affected	the	solution	algorithms.		No	single	method	is	available	to	ensure	these	benchmark	problems	have	run	correctly.	Yet,	the	following	steps	are	recommended	to	verify	results.	First,	the	benchmark	problems	have	been	designed	with	the	expectation	that	the	solution	will	converge	successfully,	providing	useful	output	for	review.	Second,	this	solution	should	be	symmetric	given	the	symmetric	source	and	material	layout.	Users	may	view	the	flux	solution	in	the	output	to	ensure	that	it	is	in	fact	symmetric.	Users	also	should	compare	the	number	of	transport	mesh	sweeps,	“inners,”	performed	for	a	calculation	for	further	verification	that	a	modified	SNAP	performs	the	same	as	a	base	SNAP	calculation.	The	number	of	inners	may	serve	as	a	potential	figure	of	merit,	assuming	nothing	about	the	sweep	procedure	has	changed.	That	is,	the	decomposition	of	work	may	change,	but	the	order	of	operations	should	remain	the	same,	and	the	number	of	operations	to	reach	convergence	has	also	not	changed.	These	steps	should	help	the	user	feel	confident	that	SNAP	is	computing	the	same	solution	as	the	base	SNAP	code.		The	figure	of	merit	(FOM)	is	calculated	by	taking	the	inverse	from	the	grind	time.		Both	solving	a	twice	as	big	problem	in	the	same	amount	of	time	and	solving	the	same	size	problem	in	half	the	time	will	double	the	FOM.		Any	difficulties	with	SNAP	execution	or	questions	about	the	solution	should	be	directed	to	snap@lanl.gov.				

