Trinity Center of Excellence

Managed by: New Mexico Alliance for Computing at Extreme Scales (ACES)

NNSA ASC tri-lab simulation community

COE Leads: Hai Ah Nam, Rob Hoekstra, Mike Glass, Shawn Dawson

DOE CoE Performance Portability Workshop
April 19, 2016
Trinity Advanced Technology System

COMPUTE NODES

<table>
<thead>
<tr>
<th>Intel “Haswell” Xeon E5-2698v3</th>
<th>Intel Xeon Phi “Knights Landing”</th>
</tr>
</thead>
<tbody>
<tr>
<td>9436 nodes</td>
<td>> 9500 nodes</td>
</tr>
<tr>
<td>Dual socket, 16 cores/</td>
<td>1 socket, 60+ cores,</td>
</tr>
<tr>
<td>socket, 2.3 GHz</td>
<td>> 3 Tflops/KNL</td>
</tr>
<tr>
<td>128 GB DDR4</td>
<td>96 GB DDR4 + 16GB HBM</td>
</tr>
</tbody>
</table>

#6 on Top500
November 2015
8.1 PFlops
(11 PF Peak)

Cray Aries ‘Dragonfly’ Interconnect
Advanced Adaptive Routing
All-to-all backplane & between groups

Cray Sonexion Storage System
78 PB Usable, ~1.6 TB/s

Cray DataWarp
576 Burst Buffer Nodes
3.7 PB, ~3.3 TB/s
Trinity - Performance (Portable) Challenges

COMPUTE NODES

<table>
<thead>
<tr>
<th>Intel “Haswell” Xeon E5-2698v3</th>
<th>Intel Xeon Phi “Knights Landing”</th>
</tr>
</thead>
<tbody>
<tr>
<td>9436 nodes</td>
<td>> 9500 nodes</td>
</tr>
<tr>
<td>Dual socket, 16 cores/socket, 2.3 GHz</td>
<td>1 socket, 60+ cores, > 3 Tflops/KNL</td>
</tr>
<tr>
<td>128 GB DDR4</td>
<td>96 GB DDR4 + 16GB HBM</td>
</tr>
</tbody>
</table>

- Enabling (not hindering) Vectorization
- Increase parallelism, cores/threads
- High Bandwidth Memory
- Burst Buffer – reduce I/O overhead

Cray Aries ‘Dragonfly’ Interconnect
- Advanced Adaptive Routing
- All-to-all backplane & between groups

Cray Sonexion Storage System
- 78 PB Usable, ~1.6 TB/s

Cray DataWarp
- 576 Burst Buffer Nodes
- 3.7 PB, ~3.3 TB/s

UNCLASSIFIED LA-UR-16-22721

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA
Trinity – Challenges/Opportunities

COMPUTE NODES

<table>
<thead>
<tr>
<th></th>
<th>Intel “Haswell” Xeon E5-2698v3</th>
<th>Intel Xeon Phi “Knights Landing”</th>
</tr>
</thead>
<tbody>
<tr>
<td>9436 nodes</td>
<td>> 9500 nodes</td>
<td></td>
</tr>
<tr>
<td>Dual socket, 16 cores/</td>
<td>1 socket, 60+ cores, > 3 Tflops/KNL</td>
<td></td>
</tr>
<tr>
<td>socket, 2.3 GHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>128 GB DDR4</td>
<td>96 GB DDR4 + 16GB HBM</td>
<td></td>
</tr>
</tbody>
</table>

#6 on Top500
November 2015
8.1 PFlops
(11 PF Peak)

- Scale and scaling
- Dual partition – new workflow & simulation capabilities
- Parallel FS – new Lustre DNE capabilities to improve performance
- BB - enable new workflow capabilities
- Cross compiling (impacts productivity)

Cray Aries ‘Dragonfly’ Interconnect
Advanced Adaptive Routing
All-to-all backplane & between groups

Cray DataWarp
576 Burst Buffer Nodes
3.7 PB, ~3.3 TB/s

Cray Sonexion Storage System
78 PB Usable, ~1.6 TB/s
The Master Plan

Phase 1: Collect underpants
Phase 2: Profit
Phase 3: Question mark

Source: http://southpark.wikia.com/wiki/Underpants_Gnomes
Phase 2

- Early access HW/SW
- Collaborating with COE vendor partners, early, often and with complete honesty
 - Kernel
 - Mini-App
 - Proxy
- Sharing our concerns
- Communicate

Source: http://southpark.wikia.com/wiki/Underpants_Gnomes
Access to Early HW/SW

- Application Regression Test Beds x2 (Cray) ~100 nodes (June 2015), Software Dev. Testbed < 100 nodes – Phase I, upgrades for Phase II
- White Boxes (Intel) ~ few nodes (Sept 2015/April 2016)

UNCLASSIFIED LA-UR-16-22721
COE Collaborations

- Cray
 - John Levesque (50%)
 - Jim Schwarzmeier (20%)
 - Gene Wagenbreth (100%) - new
 - Mike Davis (SNL), Mike Berry (LANL) on-site analyst
 - SMEs (Performance & Tools)
 - Acceptance team

- Intel
 - Ron Green, on-site analyst (SNL/LANL)
 - Discovery Session, Dungeons - SMEs

- ASC codes are often export controlled, large and complex = a lot of paperwork
- Embedded vendor support/expertise is needed = US citizenship
- Original projects focus on a single code/lab
CoE Projects/Highlights

- **SNL**
 - Focused on preparing the Sierra engineering analysis suite for Trinity
 - Proxy Codes: miniAero (explicit Aerodynamics), miniFE (implicit FE), miniFENL, BDDC (Domain Decomp. Solver)
 - ‘Super’ Dungeon Session including
 - More realistic code/stack
 - NALU (proxy application for FEM assembly for low Mach CFD) + Trilinos multi-grid solver, Kokkos + BDDC
 - 6 weeks preparation leading up to Dungeon session
 - Expose Intel to ‘real’ codes & issues – long compile times, long tools analysis times, compiler issues, MKL issues.
 - Great for relationship/collaboration building
 - More embedded support from Cray (Gene Wagenbreth, March 2016)
CoE Projects/Highlights

- LLNL
 - Developed Proxy Code: Quicksilver (Monte Carlo transport)
 - Dynamic neutron transport problem (MPI or MPI+threads)
 - Use in performance portability activities
 - Proxy codes are not an example of efficient source code, rather a representation of a larger application
 - Discovery Sessions (x2) with proxy applications & performance portable abstraction layer
CoE Projects/Highlights

- LANL
 - Full application exploration – very large, multi-physics, multi-material AMR application (MPI-only)
 - Discovery session (Intel) & Deep dive (Cray) – on-site
 - Prototyping SPMD in radiation diffusion package as an option in code threading implementation
 - Addressing performance bottlenecks in solvers library (HYPRE) & code
 - Addressing technical debt
 - Broadening scope of COE projects to include deterministic Sn transport (full application and proxy)
 - Discovery sessions & deep dive activities
Sharing Best Practices... for now

- COE Tri-Lab Bi-Weekly Meetings/Mailing Lists
 - Logistics, “is anyone else seeing this?”, knlchatter
- COE (monthly) seminar – bringing the outside world in
 - March 2016 – Peter Mendrygal, Cray Performance
 - June 2016 - TBD
- KNL (monthly) working group
 - April 28, 2016 – John Levesque, Cray
- Activities (dungeon, discovery, training)
 - Observers invited