
LA-UR-16-22564

Coarse vs. fine-level threading in the
PENNANT mini-app

Charles R. Ferenbaugh
Applied Computer Science, CCS-7

Los Alamos National Laboratory

DOE Centers of Excellence Performance Portability Meeting
April 19, 2016

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA



A brief overview of PENNANT

Implements a small subset of basic physics from the LANL
rad-hydro code FLAG
2-D staggered-grid Lagrangian hydrodynamics on general
unstructured meshes (arbitrary polygons)
Contains about 3300 lines of C++ source code
– 2300 lines used in the main hydro cycle
– 1000 lines of support code: mesh generators, graphics output, . . .
– Compare to > 600K lines for FLAG

Has complete implementations for multicore CPUs (MPI +
OpenMP) and GPUs (CUDA)

Slide 2

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA



Three basic threading models

Threading models fall into three basic categories:
– Data-parallel, loop level
– Data-parallel, higher level
– Task-parallel

These are not mutually exclusive; can be combined
For this talk, I’m mainly interested in the first two (data-parallel)

Slide 3

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA



Threading model 1: Data-parallel, loop level

Example in OpenMP:
#pragma omp parallel for

for (int n = 0; n < num_points; ++n) {

z[n] = a * x[n] + y[n];

w[n] = z[n] * x[n];

...

}

Relatively easy to implement in legacy code
Other systems that support this: RAJA, Kokkos; CUDA,
OpenCL; Thrust

Slide 4

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA



Threading model 2: Data-parallel, high level
(used in the baseline version of PENNANT)

Example in OpenMP:
#pragma omp parallel for

for (int c = 0; c < num_chunks; ++c) {

run_step1(nbegin[c], nend[c]);

run_step2(nbegin[c], nend[c]);

run_step3(pbegin[c], pend[c]);

...

}

This has more work in the parallel region than the loop-level
version does
Requires some refactoring
Other systems that support this: CUDA, OpenCL; RAJA, Kokkos
(later versions)

Slide 5

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA



PENNANT versions tested

Four variants of MPI+OpenMP PENNANT
– coarse: baseline version, has 5 fairly large chunk-level parallel for

loops per hydro cycle
– medium: splits up some loops, has 13 chunk loops per cycle
– fine: puts every function call in its own loop, has 30 chunk loops

per cycle
– loop: instead of chunk-level threading, adds loop-level pragmas to

all loops
Three variants of CUDA PENNANT
– coarse, medium, fine: as above, with each OpenMP parallel for

loop translated into a CUDA kernel in CUDA
– CUDA has no explicit loops, so there’s no loop variant

Slide 6

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA



Threading model comparison:
Sandy Bridge, OpenMP

Runtime increases as size of parallel sections decreases
Relative difference between versions increases slightly with
problem size

Slide 7

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA



Threading model comparison:
Fermi GPU, CUDA

As on the CPU, runtime increases as size of parallel sections
decreases

Slide 8

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA



Threading model comparison:
various architectures

Only the Sedov test problem is shown here; other tests give
similar results

Slide 9

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA



Threading model comments

Why are the medium and fine versions slower?
– Probably due to higher memory turnover, more context switching
Why is the loop version even slower, especially on BG/Q?
– Memory turnover, context switching apply even more here
– loop version contains many atomic operations for side-to-zone

reductions
• These are particularly slow on BG/Q
• Could remove these with a more flexible iteration schedule, as in

RAJA or Kokkos

Slide 10

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA



Pros and cons of high-level data parallelism

Pros:
Performs better than loop-level on a range of architectures
Can use many existing kernels with minimal change

Cons:
For legacy codes, requires some refactoring work at driver level
Requires reasoning about thread safety, synchronization
between kernels

Slide 11

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA



What about task-level parallelism?

This is a longer-term question – most task-parallel runtimes are
still maturing, not in production use
These will likely have similar coarse vs. fine issues
– In codes with smaller kernels/tasks, more time is spent in

overhead and scheduling
– The Legion developers at Stanford have observed this

Slide 12

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA



Conclusions

Coarse-grained threading over chunks performs better than
fine-grained chunk threading or loop-level threading
– This will probably be the method of choice for data parallelism in

new codes
– For legacy codes with limited resources, loop-level threading may

be a good compromise

Task-level parallelism will probably have similar issues; this will
need further study

Slide 13

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA



Thanks for your attention!

Charles Ferenbaugh
cferenba@lanl.gov

github.com/losalamos/PENNANT

Slide 14

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA



Backup slides...

Slide 15

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA



Test problems

test name # zones # cycles
nohsquare 129600 7677
nohpoly 63001 9876
sedov 291600 3882
leblanc 230400 3775

Problem sizes are chosen so that all problems do roughly the same
amount of work (zones × cycles)

Slide 16

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA



Platforms used

Runs were done using a single node/card of each of the following:

threads freq. peak power
cores / core (MHz) Gflops (W)

Intel Xeon E5-2670
(Sandy Bridge)

16 2600 332.8 230

Intel MIC (KNC) 60 4 1050 1065 225
Blue Gene/Q 16 4 1600 204.8 63
Nvidia M2090 (Fermi) 512 1300 665 225
Nvidia K20X (Kepler) 2688 732 1310 235

Slide 17

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA


