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A brief overview of PENNANT

Implements a small subset of basic physics from the LANL
rad-hydro code FLAG
2-D staggered-grid Lagrangian hydrodynamics on general
unstructured meshes (arbitrary polygons)
Contains about 3300 lines of C++ source code
– 2300 lines used in the main hydro cycle
– 1000 lines of support code: mesh generators, graphics output, . . .
– Compare to > 600K lines for FLAG

Has complete implementations for multicore CPUs (MPI +
OpenMP) and GPUs (CUDA)
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Three basic threading models

Threading models fall into three basic categories:
– Data-parallel, loop level
– Data-parallel, higher level
– Task-parallel

These are not mutually exclusive; can be combined
For this talk, I’m mainly interested in the first two (data-parallel)
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Threading model 1: Data-parallel, loop level

Example in OpenMP:
#pragma omp parallel for

for (int n = 0; n < num_points; ++n) {

z[n] = a * x[n] + y[n];

w[n] = z[n] * x[n];

...

}

Relatively easy to implement in legacy code
Other systems that support this: RAJA, Kokkos; CUDA,
OpenCL; Thrust
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Threading model 2: Data-parallel, high level
(used in the baseline version of PENNANT)

Example in OpenMP:
#pragma omp parallel for

for (int c = 0; c < num_chunks; ++c) {

run_step1(nbegin[c], nend[c]);

run_step2(nbegin[c], nend[c]);

run_step3(pbegin[c], pend[c]);

...

}

This has more work in the parallel region than the loop-level
version does
Requires some refactoring
Other systems that support this: CUDA, OpenCL; RAJA, Kokkos
(later versions)
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PENNANT versions tested

Four variants of MPI+OpenMP PENNANT
– coarse: baseline version, has 5 fairly large chunk-level parallel for

loops per hydro cycle
– medium: splits up some loops, has 13 chunk loops per cycle
– fine: puts every function call in its own loop, has 30 chunk loops

per cycle
– loop: instead of chunk-level threading, adds loop-level pragmas to

all loops
Three variants of CUDA PENNANT
– coarse, medium, fine: as above, with each OpenMP parallel for

loop translated into a CUDA kernel in CUDA
– CUDA has no explicit loops, so there’s no loop variant
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Threading model comparison:
Sandy Bridge, OpenMP

Runtime increases as size of parallel sections decreases
Relative difference between versions increases slightly with
problem size
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Threading model comparison:
Fermi GPU, CUDA

As on the CPU, runtime increases as size of parallel sections
decreases
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Threading model comparison:
various architectures

Only the Sedov test problem is shown here; other tests give
similar results
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Threading model comments

Why are the medium and fine versions slower?
– Probably due to higher memory turnover, more context switching
Why is the loop version even slower, especially on BG/Q?
– Memory turnover, context switching apply even more here
– loop version contains many atomic operations for side-to-zone

reductions
• These are particularly slow on BG/Q
• Could remove these with a more flexible iteration schedule, as in

RAJA or Kokkos
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Pros and cons of high-level data parallelism

Pros:
Performs better than loop-level on a range of architectures
Can use many existing kernels with minimal change

Cons:
For legacy codes, requires some refactoring work at driver level
Requires reasoning about thread safety, synchronization
between kernels
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What about task-level parallelism?

This is a longer-term question – most task-parallel runtimes are
still maturing, not in production use
These will likely have similar coarse vs. fine issues
– In codes with smaller kernels/tasks, more time is spent in

overhead and scheduling
– The Legion developers at Stanford have observed this
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Conclusions

Coarse-grained threading over chunks performs better than
fine-grained chunk threading or loop-level threading
– This will probably be the method of choice for data parallelism in

new codes
– For legacy codes with limited resources, loop-level threading may

be a good compromise

Task-level parallelism will probably have similar issues; this will
need further study
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Thanks for your attention!

Charles Ferenbaugh
cferenba@lanl.gov

github.com/losalamos/PENNANT
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Backup slides...
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Test problems

test name # zones # cycles
nohsquare 129600 7677
nohpoly 63001 9876
sedov 291600 3882
leblanc 230400 3775

Problem sizes are chosen so that all problems do roughly the same
amount of work (zones × cycles)
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Platforms used

Runs were done using a single node/card of each of the following:

threads freq. peak power
cores / core (MHz) Gflops (W)

Intel Xeon E5-2670
(Sandy Bridge)

16 2600 332.8 230

Intel MIC (KNC) 60 4 1050 1065 225
Blue Gene/Q 16 4 1600 204.8 63
Nvidia M2090 (Fermi) 512 1300 665 225
Nvidia K20X (Kepler) 2688 732 1310 235
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