
Nikolay Sakharnykh, 4/20/2016

HPGMG

2

HPGMG
High-Performance Geometric Multi-Grid

Finite-volume geometric multi-grid proxy

2nd and 4th order flux approximation

AMR and Low Mach Combustion codes

Top500 benchmarking

http://crd.lbl.gov/departments/computer-science/PAR/research/hpgmg/

http://crd.lbl.gov/departments/computer-science/PAR/research/hpgmg/
http://crd.lbl.gov/departments/computer-science/PAR/research/hpgmg/
http://crd.lbl.gov/departments/computer-science/PAR/research/hpgmg/
http://crd.lbl.gov/departments/computer-science/PAR/research/hpgmg/

3

HYBRID IMPLEMENTATION
Take advantage of both architectures

Fine levels are executed on throughput-optimized processors (GPU)

Coarse levels are executed on latency-optimized processors (CPU)

G
P
U

C
P
U

THRESHOLD

V-CYCLE F-CYCLE

4

HYBRID IMPLEMENTATION
What is the optimal threshold?

1.0E+07

1.5E+07

2.0E+07

2.5E+07

3.0E+07

3.5E+07

4.0E+07

4.5E+07

5.0E+07

5.5E+07

6.0E+07

6.5E+07

7 6 5 4 3 2 1

D
O

F/
s

number of levels on GPU

HPGMG v0.3 hybrid performance

 h 2h

All levels on GPU All levels on CPU

execute on GPU if
>10K grid points

5

MEMORY MANAGEMENT
Data structures

HPGMG-FV entities naturally map to GPU hierarchy

THREAD BLOCK

OMP THREAD

GPU

MULTI-GPU

MPI RANK
MULTI-PROCESS

D
O

M
A

IN

B
O

X

B
L
O

C
K

GRID 0 GRID 1

GRID 2 GRID 3

6

MEMORY MANAGEMENT
Data structures

volume

box 1 box 2 box 3

v
e
c
to

rs
 (

~
1
0
) volume

box 1 box 2 box 3

Vector data within a level is contiguous
Requires one copy per vector

Vector data within a level is disjoint
Requires one copy per box

7

MEMORY MANAGEMENT
Using Unified Memory

No changes to data structures

No explicit data movements

Single pointer for CPU and GPU data

Use cudaMallocManaged for allocations

Developer View With
Unified Memory

Unified Memory

8

UNIFIED MEMORY
Simplified GPU programming

Minimal modifications to the original code:

(1) malloc replaced with cudaMallocManaged for levels accessed by GPU

(2) Invoke CUDA kernel if level size is greater than threshold (or use directives)

 void smooth(level_type *level,...){
...

if(level->use_cuda) {

 // run on GPU

 cuda_cheby_smooth(level,...);

}

else {

 // run on CPU

 #pragma omp parallel for

 for(block = 0; block < num_blocks; block++)

 ...

}}

9

UNIFIED MEMORY
What about performance?

Problem: excessive faults and migrations at CPU-GPU crossover points

NVVP timeline for HPGMG

level 0 level 1 level 2

10

UNIFIED MEMORY
Eliminating page migrations and faults

Level N Level N+1

Smoother Residual Restriction

data

GPU kernels

Smoother

CPU functions

Redisual

11

 Level N (large) is shared between CPU and GPU

UNIFIED MEMORY
Eliminating page migrations and faults

Level N Level N+1

Smoother Residual Restriction

data

GPU kernels

Smoother

CPU functions

Redisual

12

 Level N (large) is shared between CPU and GPU

Solution: allocate the first CPU level with cudaMallocHost (zero-copy memory)

Level N+1 (small) is shared between CPU and GPU

UNIFIED MEMORY
Eliminating page migrations and faults

Level N Level N+1

Smoother Residual Restriction

data

GPU kernels

Smoother

CPU functions

Redisual

13

UNIFIED MEMORY

+20% speed-up!

no page faults

CPU levels allocated with cudaMallocManaged

CPU levels allocated with cudaMallocHost

14

STENCILS ON GPU
Optimizations summary on Kepler

0.0

0.5

1.0

1.5

2.0

2.5

baseline tex l1 reg reg+smem reg+tex reg+l1

ke
rn

e
l s

p
e

e
d

-u
p

optimization

4th-order GSRB smoother performance

1x

2x

Minimal code
changes

Moving data to
on-chip memory

15

MULTI-GPU
CUDA-aware MPI

MPI buffers can be allocated with cudaMalloc, cudaMallocHost, cudaMallocManaged

CUDA-aware MPI can stage managed buffers through system/device memory

0.00E+00

2.00E+07

4.00E+07

6.00E+07

8.00E+07

1.00E+08

managed managed + cuda-
aware

zero-copy device + cuda-
aware

2xTESLA K40 WITH P2P SUPPORT

D
O

F
/
s

16

MULTI-GPU
MPI vs SHMEM

MPI SHMEM

CopyKernel(BOUNDARY-TO-BUFFER)
cudaDeviceSync
MPI_Irecv + MPI_Isend
CopyKernel(INTERNAL-TO-INTERNAL)
MPI_Waitall
CopyKernel(BUFFER-TO-BOUNDARY)

CopyKernel(ALL-TO-ALL)
shmem_barrier_all

Boundary exchange code

0

5

10

15

20

128^3 64^3 32^3

Ti
m

e
 (

m
s)

MPI

NVSHMEM

