Apollo: Lightweight Models for Dynamically Tuning Data-Dependent Code

DoE Centers of Excellence Performance Portability Meeting

April 20, 2016

David Beckingsale
What is Apollo?

- Emerging frameworks like RAJA & Kokkos allow portable code to be written with single source kernels
- This provides a mechanism for tuning the code, but no suggestions as to how to tune
- A code’s behavior depends not only on the host architecture, but also on the input problem and run-time adaptation
- Apollo is an auto-tuning extension for RAJA that uses pre-trained, reusable modes to tune data-dependent code at runtime on a **kernel-by-kernel basis**
forall<exec_policy>(iset, [&] (Index_type i) {
 y[i] += a * x[i];
});

- **Execution policy** determines how loop iterations are scheduled to the hardware: OpenMP, Sequential, CUDA
- RAJA provides a native, C++ mechanism for tuning code at the kernel level, used in production DoE applications
- We focus on tuning the execution policy
Approach

- Traditional auto-tuners search a parameter space for the best configuration

- Using off-line training with statistical classifiers, we build lightweight decision models that **directly select values for tuning parameters**

- Our approach classifies kernels into categories where certain tuning parameters are “best”

- We use these classifiers to generate conditional statements (tuning models) that can be evaluated before each kernel execution

- These tuning models are low-overhead, and can respond quickly to changes in input data
Apollo Workflow

Apollo Recorder
- `loop=1, num_iterations=400, ...`
- `loop=3, num_iterations=125, ...`
- `loop=N, num_iterations=376, ...`

Apollo Tuner
- Dynamically evaluate tuning model using loop information gathered at runtime

Apollo
- Dynamically load control library

RAJA
- `::forall<exec_policy>(IndexSet, [=](int i) {
 sigxx[i] = sigyy[i] = sigzz[i] = - p(i) - q(i);
});`

Apollo Control Libraries

RAJA
- `apollo::begin();`
- `forall(EXEC_POLICY_T(), iset, loop_body);`
- `apollo::end();`
Tuning CleverLeaf

- CleverLeaf is a hydrodynamics mini-application with Adaptive Mesh Refinement (AMR)

- AMR means that subdomains are created dynamically as the application runs, depending on the simulation
 - subdomain size is strongly correlated with the best execution policy

- Our models use kernel information, as well as application-level information like global problem size and current cycle count

- We apply the models on up to 16 nodes (256 cores) with each model tuning kernels executing on the subdomains local to a single MPI rank
Tuning CleverLeaf: up to 4.8x speedup
Limitations / What’s next?

- Although our approach requires an offline training step, the models for CleverLeaf were generated with < 2 hours of training data and are re-usable across input decks.
- We are working to make models that can tune multiple applications, allowing us to batch training data collection and amortize the upfront cost.
- Apollo currently tunes execution policies on a homogeneous node, but with new CUDA 8.0 support for host/device lambdas, we can move to predicting where kernels should execute.
Implementation

- We add interface hooks to RAJA to allow Apollo to tune kernel parameters without recompilation

- Two control libraries can attach to these hooks:
 - Recorder: to record kernel information and runtime used to train our decision classifiers
 - Tuner: contains the conditional logic generated from the classifier to implement dynamic parameter selection

- The recorder collects information like iteration count, kernel size, and instruction counts

- The tuner evaluates the model logic and writes a predicted parameter value to a shared space where it is used by the Apollo runtime to execute the kernel.