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The Path to Truth . . .

“If error is corrected
whenever it is recognized as such,

the path to error
is the path of truth.”

Hans Reichenbach
The Rise of Scientific Philosophy, 1951.
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A Comprehensive Approach to Uncertainty Quantification

Three primary processes in computational UQ

• Calibration – infer model parameters from data (Bayesian Inference)

• Validation – build confidence by evaluating consistency with experiments

• Prediction – predict a Quantity of Interest (QoI) and it’s uncertainty

Validation is the central activity and challenge
• Involves calibration and prediction (uncertainty propagation)

• Drives model development and experimental measurement

• Fundamental to scientific inquiry

• Is more challenging in the presence of uncertainty
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Overarching Application
V&V - UQ must be done in the context of specific QoI
• To assess survival of a vehicle, two key quantities:

I Rate of recession of TPS (throughout peak heating regime)
I Local peak heat flux to after-body

• Validation and uncertainty quantification will be pursued for these QoI
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We will simulate

• Earth? reentry vehicle with ablative TPS
• The thermal environment

I Radiative
I Convective
I Chemical

• The heat loads on the vehicle

• The consumption of ablative TPS

• During the peak heating regime
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Not all uncertain parameters are equal
• ∼ 300 parameters

• < 30 parameters account for 95%+ uncertainty

• > 150 parameters negligible to within numerical error
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Validation process requires attention to detail

1. Description of objectives for the predictions:
Precisely defined Quantities of Interest (QoI’s).

2. Modeling:
Complete mathematical description of models, including all parameters,
assumptions and limitations

3. Prior information about models:
Available prior information (e.g. from literature) and its reliability

4. Sensitivity analysis:
Rank parameters according to their influence on sensitivity of QoI.

5. Calibration experiments:
Detailed characterization of scenario, observables & uncertainties

6. Validation experiments:
Detailed characterization of scenario, observables & uncertainties and
assumptions (hypotheses) to be challenged.
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The Bayesian Approach

P (B|A) =
P (B ∩A)
P (A)

P (A|B) =
P (A ∩B)
P (B)

P (B|A) =
P (A|B)P (B)

P (A)

Let A = data, B = parameters

Then P (A|B) = the model
Thomas Bayes

posterior knowledge =
likelihood of data · prior knowledge

probability of data

“Theories have to be judged in terms of their probabilities in light of the evidence”.
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Validation in the Context of the QoI
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Experimental Data

Validation and Uncertainty Quantification require experimental data

Calibration of component model parameters
• Thermochemistry (e.g. kinetic parameters)

• Radiation (e.g. absorptions & emissions)

• Turbulence (e.g. model constants)

• Ablation (e.g. kinetic parameters)

Validation
• Component and possibly subcomponent models

• Coupling between models

• Full system simulations
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Data Validation & UQ

Validation and Uncertainty Quantification require experimental data
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Data Validation & UQ

Data reduction model requires validation
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Example Application: RANS Model Uncertaintiy
Physical Model: RANS coupled with Spalart-Allmaras

ūj
∂ν̃

∂xj
= cb1S̃ν̃ +

1
σ

∂

∂xj

(
(ν + ν̃)

∂ν̃

∂xj

)
+
cb2
σ

∂ν̃

∂xj

∂ν̃

∂xj
− cw1fw

(
ν̃

d

)2

• Many closure functions: νt = fv1ν̃, fv1 = χ3

χ3+cv1
3 , χ = ν̃/ν, etc.

• Seven calibration parameters: cb1, cb2, σ, κ, cv1, cw2, cw3

Calibration Data: Flat plate boundary layer experiments
Mean velocity and wall shear stress measurements from two cases:
Zero pressure gradient

• Osterlund at KTH

• Maximum Reθ = 2.6× 104

• Maximum β ≡ δ∗

τw
dpe

dx = 0.0

Favorable pressure gradient

• Nagib at IIT

• Maximum Reθ = 4.3× 104

• Maximum β = −0.16
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Stochastic Models of Model Error

Examine multiple formulations
Three probabilistic models for the differences between the experimental
observations and the model calculations:

• M1: Independent, Gaussian random variables, known variance

• M2: Independent, Gaussian random variables, calibrated variance

• M3: Correlated, Gaussian random variables with correlation derived
from stochastic velocity field model

Observations
• Different stochastic models imply different likelihood pdfs

I Calibration problems are different⇒ parameter pdfs are different
I Model evidence is different⇒ model plausibility is different

• Different stochastic models imply different uncertainty in predictions
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SA Model: Parameter Posterior PDFs

cb1 Marginal Posterior
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Observations
• Uncertainty representation can affect parameter posterior

• κ very well determined by the data, but is different from nominal

R. D. Moser UQ for Atmospheric RVs 18 / 26



Stochastic Model: Evidence and Prediction

τw Prediction PDF
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Model Plausibility

M1 M2 M3

Plausibility 2.3e-4 2.5e-5 9.997e-1

• M3 is best model of this set

• M3 gives largest prediction uncertainty

P (Mi|D,M)︸ ︷︷ ︸
Plausibility

∝ Pprior(Mi|M)︸ ︷︷ ︸
Prior

Pev(D|Mi,M)︸ ︷︷ ︸
Evidence

• Different stochastic models lead to different prediction uncertainty
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Example Application: HCN /O2/Ar Kinetics

HCN/O2 chemistry with 11 species (O, N , H , Ar, O2, OH , CN , CO,
NO, HCN , and NCO ) and 6 reactions:

R1 : HCN +Ar → H + CN +Ar

R2 : O2 +H → OH +O

R3 : O2 + CN → NCO +O

R4 : HCN +O → NCO +H

R5 : NCO +Ar → CO +N +Ar

R6 : O2 +N → NO +O

• Related to the problems of interest in this project

• Experimental data ([O] and [N ]) for 22 different initial conditions from (Thielen and Roth 1987)
are available.
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Information Theoretic Interpretation
Rearranging Bayes formula:

P (D|M1) =
P (θ|M1) P (D|θ,M1)

P (θ|D,M1)
= P (D|θ,M1)

/
P (θ|D,M1)
P (θ|M1)

Log and integrating:
∫

ln[P (D|M1)] P (θ|D,M1) dθ︸ ︷︷ ︸R
= 1

= . . .

Then:

ln[P (D|M1)]︸ ︷︷ ︸
log evidence

= E [ln[P (D|θ,M1)]]︸ ︷︷ ︸
how well the model
class fits the data

− E

[
ln
P (θ|D,M1)
P (θ|M1)

]
︸ ︷︷ ︸
how much the model

class learns with the data
(expected information gain,EIG)
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How much information do we gain from data?

EIG of each uncertain physical parameter
EIG of uncertain physical parameters,
modeling error, experimental error

• All physical parameters gain similar amount of information, R1 activation energy gains the most

• Most information is gained by the physical parameters not the errors
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Are we collecting the best data?

EIG of reaction rates R1,..., R6 at different
temperatures

EIG from each data set (different experimental
conditions)

• Left fig: Significant larger expected information gain for R1 than the others

• Right fig: Different data sets (with different initial conditions set-up) have different expected
information gain

• Why spend resources to do some experiments that will gain less information than the others?
Data=Useful information
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Optimal experimental design

MAX EIG MAX EIG

• Do experiments according to optimal design to maximize efficiency

• Design optimally & sequentially as time goes

• Interacting with experimentalists
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V&V-UQ Summary

Validation is central to uncertainty quantification
• Indicates need for refined models or more data

• Builds confidence in a model’s predictive capability

• Determines the simplest acceptable model

• Need validated models of model uncertainty

• Validation requires experimental data

• Data reduction models require validation
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Thank you!

Questions?
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