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Fault tolerance

= Fault tolerance comes In different
flavors
= Mission-critical systems: (eg) air
traffic control system
= No down-time, fail-over, redundancy

= Computational applications
« Restart after failure
« Minimize expected time to completion
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Our experience/beliefs:

= Message-logging does not work well for
communication-intensive numerical
applications
= Many messages, much data

= System-level checkpoint is not as efficient as
application-level

=« IBM’s BlueGene protein folding
= Sufficient to save positions and velocities of bases

= Alegra talk
= App. level restart file only 5% of core size



Our goal

= Develop a preprocessor that will transparently add
application-level checkpointing to MPI applications
= As easy to use as system-level checkpointing
= As efficient as user-specified application-level checkpointing
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no FT consideration  with app. level FT

— —

I I I

FT MPI application

our preprocessor native compiler



Choices for Runtime layer

Application Application

FT layer "
4 MPI
MPI
| FT layer

Hardware Hardware

Qur choice




Outline

= Introduction

= Application-level FT for sequential applications
= Problems in supporting MPI applications

= Approaches to solving these problems

= Status and ongoing work



Sequential application state

= An application’s state consists of
o Program counter
= Call stack
= Globals
= Heap objects
= Similar in technique to PORCH
= Ramkumar, Strumpen (lowa / MIT)



Example

mai n()

{

I nt a;
VDS. push(&a, sizeof a);
if(restart)
| oad LS;
copy LS to LS. old
junp dequeue( LS. ol d)
...
LS. push(2);

| abel 2:

function();
LS. pop();
/...

VDS. pop() ;

function()

{

I nt b;
VDS. push( &b, sizeof b);
if(restart)

junp dequeue( LS. ol d)
...
LS. push(2);
take _ckpt();

| abel 2:

i f(restart)
| oad VDS;
restore vari abl es;
LS. pop() ;
1.
VDS. pop() ;



Optimizations

= Where should we checkpoint?
= CATCH
=« Li, Fuchs (lllinois)
= Memory exclusion

= Live/Clean/Dead variable analysis
« Plank, Beck, Kingsly (Univ. Tennessee)

= Recomputation vs. restoring
= Protein folding example
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Supporting MPI applications

= It is not sufficient to take a checkpoint of
each individual process

= We need to account for the following
= In-flight messages
= Inconsistent messages
= Non-blocking communication
= “Hidden” MPI state

= At application level, message send/receive not

necessarily FIFO
= Process can use tags to receive messages out of order



In-flight and inconsistent messages

recovery line

P1

ml

P2 N
= m1l is in-flight (sent but not recvd)
= M2 IS Inconsistent (recvd but not sent)




Non-blocking communication

= MPI allows for non-blocking communication

v

P1

? ?

v

P2

| send

= Did the send happen before or after P2’s checkpoint was taken?

= If it happened before, it is consistent. If it happened after, it is
Inconsistent.



“Hidden” MPI state

s Need to save and restore the state of
the MPI library

= [his state I1s hidden from our
preprocessor
s Two kinds of hidden state

= Persistent - communicators, groups, etc.
= Not correct to take system-level ckpt

= Volatile - request objects (not handles)




Non-FIFO recelve order

= Applications may receive messages in non-FIFO order

= Two messages from P2 to P1 will be received in send order only if
they have the same tag and communicator

= Most protocols assume FIFO
Recv(tag = 2) Recv(tag = 1)

P1

v

P2

v

Send(tag = 1) Send(tag = 2)
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Beliefs

= Complexity of making program FT may
vary from program to program

= Not all programs will exhibit all the
problems described earlier

= FT protocol should be customized to
complexity of program
= Minimize the overhead of fault tolerance



Degrees of complexity

Non-FIFO MIMD

MIMD(eg. Task parallelism) Increasing
Iterative Synchronous complexity
of protocol

Bulk Synchronous

Parametric computing




Parametric computing

= Parametric computing, i.e. embarrassingly
parallel

Di stribute work
Do wor k
Col l ect Results

= No communication in “Do work™ area

= Can take uncoordinated checkpoints within
that area

= Each takes its own checkpoints



Bulk synchronous

= “Phase-step” model of computation

do work 1
barri er
do work 2
barri er
do work 3

= Communication and computation in “do work” areas
= Use blocking coordinated checkpointing, provided
= NO messages cross the barrier

= NO transient hidden state that crosses the barrier
= —2requires compiler analysis



Analysis problems

| f(rank = 0) | f(rank = 0)
send( 1) | _send( &r)
El se El se
send( 0) | recv(&r)
Barri er Barri er
| f(rank = 0) Wi t (&)
recv(1l)
El se

recv(0)



Iterative synchronous

= Each process runs the same number of

iterations of a loop
for(i.)
{

Communi cat e
Comput e

}

= Are there places where barriers can be
(safely) inserted?

= If so, treat as bulk synchronous



Analysis problem

For () For ()
{ {
i f (rank = 0) i f(rank = 1)
¥ = 1 recv
el se .
Barri er?
X = 2
T{x = ?) | f(rank = 0)
Barrier? send



consumer)

I f(rank = 0)
{
whi | e( not done)
send( DATA)
send( DONE)
}

El se
{
int Xx;
whi | e( 1)
recv( ANY_TAG
i f(tag = DATA)
x += f( DATA)
el se
br eak

Task parallel (e.q.

producer /

= There are no
Interesting (useful)
places to insert
barriers

= Can’t use blocking
protocol

= Must use non-
blocking protocol



Non-blocking protocol

= Chandy-Lamport is a simple, well-known,
coordinated non-blocking protocol

= Assumes FIFO channels

= Initiator takes local checkpoint, and sends marker
to neighbors

= On receiving marker, process takes checkpoint
and sends its marker to neighbors
= After taking checkpoint, process P logs all

messages from process R, until R’s marker arrives
= These are in-flight messages



Example

= Process Q initiated the checkpoint.
= It logs all messages from P until P’'s marker arrives
= On restart, Q “receives” from log until empty

P

In-flight, log Not in-flight



Drawbacks of C-L protocol

= Does not work for application-level
checkpointing

= In C-L, process must checkpoint as soon as
It receives a marker from a neighbor

= Assumes fixed communication graph
s Assumes FIFO communication
= NO notion of collective communication



CL with delayed checkpointing

= Before checkpoint

= log count of all messages from R that arrive after R's marker
arrived

= After checkpoint
= Log all messages that arrive from S until S’s marker arrives

= Log all non-deterministic choices made until all markers have
arrived

Log in-fligh
N
vV

Log non-det

v

0g inconsistent count
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Status

= Completed
= Preprocessor for saving/restoring sequential state
= NO optimizations

= In progress
= Application API
= Determining checkpoint locations
= Support for in-flight/non-FIFO msgs/.....

= Implementing modified CL protocol
= Support for saving volatile hidden MPI state

Analysis problems




