Productive Software and The Path to ExaScale
Bill Dally | Chief Scientist and SVP, Research NVIDIA | Professor (Research), EE&CS, Stanford

18,688 NVIDIA Tesla K20X GPUs
TITAN 27 Petaflops Peak: 90% of Performance from GPUs
- 17.59 Petaflops Sustained Performance on Linpack

GANVIDIA.

You Are Here

2020

1,000PF (50x)
72,000HCNSs (4x)

20MW (2x)
20PF 50 GFLOPs/W (25x)
18,000 GPUs ~10" Threads (1000x)
10MW
2 GFLOPs/W
~10’ Threads

<ANVIDIA.

Long-Term Vision: Compute Node & System

System Interconnect
I i BO00N |
00

Stacks
I-20 CICON) I-2255
00
Node 0: 16 TF, 2 TB/s, 512+ GB
Cabinet 0: 4 PF, 128 TB Cabinet N-1
System (up to 1 EF) 4

Efficiency:

Malleable memory hierarchy
Hierarchical register files
Hierarchical thread scheduling
Place coherency/consistency
Temporal SIMT & scalarization

Programmability:

*Global address space (PGAS)
*AMOs and collectives

*Efficient work creation

*Fast synchronization
Streamlined LOC/TOC interaction
*Active messages

<ANVIDIA.

Programming Systems

Collection-oriented programming framework
Provide higher-level abstractions for performance portability.

reduce(combine, map(update, split(x, size)))

Core programming model
Provide foundation for managing heterogeneity, parallelism, & locality.

auto where = placeof(ptr);
int *more = allocate<int>(where, n);
wait(async(where, n)(some_function, x, more));

Runtime environment
Provide system-level support for unified virtual memory.

setup_array(A);
launch_kernel(A, x, y);
inspect_results(A);

Our Goals

High-level performance portability
across diverse machines. With tools
to automate/assist mapping to...

Foundations permitting experts to
write the code they want and others
to build upon that cleanly.

Runtime environment that provides a
unified memory model to the
application.

<ANVIDIA.

Overhead Dominates Power in CPUs

In-order Embedded 00O Hi-perf

ALU Data
Supply
5%

Dally [2008] (Embedded in-order CPU) Natarajan [2003] (Alpha 21264)

<ANVIDIA.

Much of the Rest is Communication

64-bit DP
20pJ

256-bit buses

256-bit access
8 kB SRAM

256 pJ

16 nJ

500 pJ

DRAM
Rd/Wr

Efficient
off-chip link

<ANVIDIA.

—=Needed

==Process

-_—
o

GFLOPS/W

1
2013 2014 2015 2016 2017 2018 2019 2020

<ANVIDIA.

A simple parallel program

forall molecule in set { // launch a thread array
forall neighbor in molecule.neighbors { // nested
forall force in forces { // doubly nested
molecule.force =
reduce sum(force (molecule, neighbor))

<ANVIDIA.

Why is this easy?

forall molecule in set { // launch a thread array
forall neighbor in molecule.neighbors { // nested
forall force in forces { // doubly nested

molecule.force =
reduce sum(force (molecule, neighbor))

}

No machine details

All parallelism is expressed

Synchronization is driven by data dependencies
Communication is captured in the reduction e

pid = fork() ; // explicitly managing threads

lock (struct.lock) ; // complicated, error-prone synchronization
// manipulate struct
unlock (struct.lock) ;

code = send(pid, tag, &msg) ; // partition across nodes

We could make it hard

<ANVIDIA.

Programmers, Tools, and Architecture
Need to Play Their Positions

<ANVIDIA.

Programmers, Tools, and Architecture
Need to Play Their Positions

Algorithm
All of the parallelism

P
rellrellisr Abstract locality

Combinatorial optimization
Mapping
Selection of mechanisms

Fast mechanisms
Architecture Exposed costs

<ANVIDIA.

Programmers, tools, and architecture
Need to play their positions

forall molecule in set { // launch a thread array
forall neighbor in molecule.neighbors { //
forall force in forces { // doubly nested

Programmer molecule.force =

reduce_ sum(force (molecule, neighbor))
}

}
}

Architecture

Map foralls in time and space Exposed storage hierarchy
Map molecules across memories sse - Fast comm/sync/thread mechanisms
Stage data up/down hierarchy gssesse

Select mechanisms SANVIDIA.

Target-
Independent
Source

Mapping
Directives

Mapping
Tools

Target-
Dependent
Adaptation

Compile

Profiling &
Visualization

Target-
Dependent
Executable

<ANVIDIA.

We need Power Tools for Parallel Programming.
Conventional Programming Systems are Hand Tools

<ANVIDIA.

GFLOPS/W

Power

25x Efficiency
with 2.2x from process

—+Needed 4x
—+Process
10 P =
/ J —
- 7 23
/ £X
1
2013 2014 2015 2016 2017 2018 2019 2020

Programming
Parallelism
Heterogeneity
Hierarchy

Programmer

Architecture

<ANVIDIA.

-

“Supéf’; Computing

From Super Computers to Super Phones

