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18,688 NVIDIA Tesla K20X GPUs 

27 Petaflops Peak: 90% of Performance from GPUs 

17.59 Petaflops Sustained Performance on Linpack 

TITAN 
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Echelon Compute Node & System 
Long-Term Vision: Compute Node & System 

 

Efficiency: 

• Malleable memory hierarchy 

• Hierarchical register files 

• Hierarchical thread scheduling 

• Place coherency/consistency 

• Temporal SIMT & scalarization 

 

 
 

Programmability: 

•Global address space (PGAS) 

•AMOs and collectives 

•Efficient work creation 

•Fast synchronization 

•Streamlined LOC/TOC interaction 

•Active messages 
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Programming Systems 
Our Goals 

 

High-level performance portability 

across diverse machines.  With tools 

to automate/assist mapping to… 

 

Foundations permitting experts to 

write the code they want and others 

to build upon that cleanly. 

 

Runtime environment that provides a 

unified memory model to the 

application. 

 

Collection-oriented programming framework 

Provide higher-level abstractions for performance portability. 
 
reduce(combine, map(update, split(x, size))) 

Core programming model 

Provide foundation for managing heterogeneity, parallelism, & locality. 
 
auto where = placeof(ptr); 
int *more = allocate<int>(where, n); 
wait(async(where, n)(some_function, x, more)); 

Runtime environment 

Provide system-level support for unified virtual memory. 
 

setup_array(A); 
launch_kernel(A, x, y); 
inspect_results(A); 

Application 



Overhead Dominates Power in CPUs 

In-order Embedded OOO Hi-perf 
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64-bit DP 
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Much of the Rest is Communication 
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Needed 

Process 

CIRCUITS 
3X 

PROCESS 
2.2X 

ARCHITECTURE 
4X 



A simple parallel program 

 

forall molecule in set { // launch a thread array 

    forall neighbor in molecule.neighbors { // nested 

        forall force in forces { // doubly nested 

           molecule.force =  

             reduce_sum(force(molecule, neighbor)) 

        } 

    } 

} 



Why is this easy? 

 

forall molecule in set { // launch a thread array 

    forall neighbor in molecule.neighbors { // nested 

        forall force in forces { // doubly nested 

           molecule.force =  

             reduce_sum(force(molecule, neighbor)) 

        } 

    } 

} 

No machine details 

All parallelism is expressed 

Synchronization is driven by data dependencies 

Communication is captured in the reduction 



We could make it hard 

 

pid = fork() ; // explicitly managing threads 

 

lock(struct.lock) ;  // complicated, error-prone synchronization 

// manipulate struct 

unlock(struct.lock) ; 

 

code = send(pid, tag, &msg) ;  // partition across nodes 



Programmers, Tools, and Architecture 
Need to Play Their Positions 

Programmer 

Architecture Tools 



Programmers, Tools, and Architecture 
Need to Play Their Positions 

Algorithm 

All of the parallelism 

Abstract locality 

Fast mechanisms 

Exposed costs 

Combinatorial optimization 

Mapping 

Selection of mechanisms 

Programmer 

Architecture Tools 



Programmers, tools, and architecture 
Need to play their positions 

Programmer 

Architecture Tools 

 

forall molecule in set { // launch a thread array 

    forall neighbor in molecule.neighbors { // 

        forall force in forces { // doubly nested 

           molecule.force =  

             reduce_sum(force(molecule, neighbor)) 

        } 

    } 

} 

Map foralls in time and space 

Map molecules across memories 

Stage data up/down hierarchy 

Select mechanisms 

Exposed storage hierarchy 

Fast comm/sync/thread mechanisms 
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We need Power Tools for Parallel Programming.  
Conventional Programming Systems are Hand Tools 



Programmer 

Architecture Tools 

Programming 

Parallelism 

Heterogeneity 
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25x Efficiency 
with 2.2x from process 



“Super” Computing 
From Super Computers to Super Phones 


