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18,688 NVIDIA Tesla K20X GPUs
TITAN 27 Petaflops Peak: 90% of Performance from GPUs
- 17.59 Petaflops Sustained Performance on Linpack
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You Are Here

2020
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Long-Term Vision: Compute Node & System
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Efficiency:

Malleable memory hierarchy
Hierarchical register files
Hierarchical thread scheduling
Place coherency/consistency
Temporal SIMT & scalarization

Programmability:

*Global address space (PGAS)
*AMOs and collectives

*Efficient work creation

*Fast synchronization
Streamlined LOC/TOC interaction
*Active messages
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Programming Systems

Collection-oriented programming framework
Provide higher-level abstractions for performance portability.

reduce(combine, map(update, split(x, size)))

Core programming model
Provide foundation for managing heterogeneity, parallelism, & locality.

auto where = placeof(ptr);
int *more = allocate<int>(where, n);
wait(async(where, n)(some_function, x, more));

Runtime environment
Provide system-level support for unified virtual memory.

setup_array(A);
launch_kernel(A, x, y);
inspect_results(A);

Our Goals

High-level performance portability
across diverse machines. With tools
to automate/assist mapping to...

Foundations permitting experts to
write the code they want and others
to build upon that cleanly.

Runtime environment that provides a
unified memory model to the
application.
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Overhead Dominates Power in CPUs

In-order Embedded 00O Hi-perf
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Dally [2008] (Embedded in-order CPU) Natarajan [2003] (Alpha 21264)
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Much of the Rest is Communication
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A simple parallel program

forall molecule in set { // launch a thread array
forall neighbor in molecule.neighbors { // nested
forall force in forces { // doubly nested
molecule.force =
reduce sum(force (molecule, neighbor))
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Why is this easy?

forall molecule in set { // launch a thread array
forall neighbor in molecule.neighbors { // nested
forall force in forces { // doubly nested

molecule.force =
reduce sum(force (molecule, neighbor))

}

No machine details

All parallelism is expressed

Synchronization is driven by data dependencies
Communication is captured in the reduction e



pid = fork() ; // explicitly managing threads

lock (struct.lock) ; // complicated, error-prone synchronization
// manipulate struct
unlock (struct.lock) ;

code = send(pid, tag, &msg) ; // partition across nodes

We could make it hard

<ANVIDIA.



Programmers, Tools, and Architecture
Need to Play Their Positions
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Programmers, Tools, and Architecture
Need to Play Their Positions

Algorithm
All of the parallelism

P
rellrellisr Abstract locality

Combinatorial optimization
Mapping
Selection of mechanisms

Fast mechanisms
Architecture Exposed costs
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Programmers, tools, and architecture
Need to play their positions

forall molecule in set { // launch a thread array
forall neighbor in molecule.neighbors { //
forall force in forces { // doubly nested

Programmer molecule.force =

reduce_ sum(force (molecule, neighbor))
}

}
}

Architecture

Map foralls in time and space Exposed storage hierarchy
Map molecules across memories sse - Fast comm/sync/thread mechanisms
Stage data up/down hierarchy gssesse

Select mechanisms SANVIDIA.
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Mapping
Directives

Mapping
Tools

Target-
Dependent
Adaptation

Compile

Profiling &
Visualization

Target-
Dependent
Executable
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We need Power Tools for Parallel Programming.
Conventional Programming Systems are Hand Tools
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Programming
Parallelism
Heterogeneity
Hierarchy

Programmer

Architecture
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“Supéf’; Computing

From Super Computers to Super Phones



