
Productive Software and The Path to ExaScale
Bill Dally | Chief Scientist and SVP, Research NVIDIA | Professor (Research), EE&CS, Stanford

18,688 NVIDIA Tesla K20X GPUs

27 Petaflops Peak: 90% of Performance from GPUs

17.59 Petaflops Sustained Performance on Linpack

TITAN

20PF
18,000 GPUs

10MW
2 GFLOPs/W
~10

7
 Threads

You Are Here

1,000PF (50x)
72,000HCNs (4x)

20MW (2x)
50 GFLOPs/W (25x)

~10
10
 Threads (1000x)

2013

2020

Echelon Compute Node & System
Long-Term Vision: Compute Node & System

Efficiency:

• Malleable memory hierarchy

• Hierarchical register files

• Hierarchical thread scheduling

• Place coherency/consistency

• Temporal SIMT & scalarization

Programmability:

•Global address space (PGAS)

•AMOs and collectives

•Efficient work creation

•Fast synchronization

•Streamlined LOC/TOC interaction

•Active messages

System Interconnect

Cabinet 0: 4 PF, 128 TB
Cabinet N-1

System (up to 1 EF)

NoC

C0 C15

TOC0

L
O

C
 0

L
O

C
 7

L20

1MB

L2255

1MB
MC NIC

DRAM

Stacks

DRAM

DIMMs

NV

RAM

Node 0: 16 TF, 2 TB/s, 512+ GB

TOC255

Programming Systems
Our Goals

High-level performance portability

across diverse machines. With tools

to automate/assist mapping to…

Foundations permitting experts to

write the code they want and others

to build upon that cleanly.

Runtime environment that provides a

unified memory model to the

application.

Collection-oriented programming framework

Provide higher-level abstractions for performance portability.

reduce(combine, map(update, split(x, size)))

Core programming model

Provide foundation for managing heterogeneity, parallelism, & locality.

auto where = placeof(ptr);
int *more = allocate<int>(where, n);
wait(async(where, n)(some_function, x, more));

Runtime environment

Provide system-level support for unified virtual memory.

setup_array(A);
launch_kernel(A, x, y);
inspect_results(A);

Application

Overhead Dominates Power in CPUs

In-order Embedded OOO Hi-perf

Clock + Control Logic

24%

Data Supply

17%

Instruction Supply

42%

Register File

11%

ALU 6%
Clock + Pins

45%

ALU

4%

Fetch

11%

Rename

10%

Issue

11%

RF

14%

Data
Supply

5%

Dally [2008] (Embedded in-order CPU) Natarajan [2003] (Alpha 21264)

64-bit DP
20pJ 26 pJ 256 pJ

1 nJ

500 pJ Efficient
off-chip link

256-bit buses

16 nJ
DRAM
Rd/Wr

256-bit access
8 kB SRAM 50 pJ

20mm

Much of the Rest is Communication

1

10

2013 2014 2015 2016 2017 2018 2019 2020

G
F
L
O

P
S
/W

Needed

Process

CIRCUITS
3X

PROCESS
2.2X

ARCHITECTURE
4X

A simple parallel program

forall molecule in set { // launch a thread array

 forall neighbor in molecule.neighbors { // nested

 forall force in forces { // doubly nested

 molecule.force =

 reduce_sum(force(molecule, neighbor))

 }

 }

}

Why is this easy?

forall molecule in set { // launch a thread array

 forall neighbor in molecule.neighbors { // nested

 forall force in forces { // doubly nested

 molecule.force =

 reduce_sum(force(molecule, neighbor))

 }

 }

}

No machine details

All parallelism is expressed

Synchronization is driven by data dependencies

Communication is captured in the reduction

We could make it hard

pid = fork() ; // explicitly managing threads

lock(struct.lock) ; // complicated, error-prone synchronization

// manipulate struct

unlock(struct.lock) ;

code = send(pid, tag, &msg) ; // partition across nodes

Programmers, Tools, and Architecture
Need to Play Their Positions

Programmer

Architecture Tools

Programmers, Tools, and Architecture
Need to Play Their Positions

Algorithm

All of the parallelism

Abstract locality

Fast mechanisms

Exposed costs

Combinatorial optimization

Mapping

Selection of mechanisms

Programmer

Architecture Tools

Programmers, tools, and architecture
Need to play their positions

Programmer

Architecture Tools

forall molecule in set { // launch a thread array

 forall neighbor in molecule.neighbors { //

 forall force in forces { // doubly nested

 molecule.force =

 reduce_sum(force(molecule, neighbor))

 }

 }

}

Map foralls in time and space

Map molecules across memories

Stage data up/down hierarchy

Select mechanisms

Exposed storage hierarchy

Fast comm/sync/thread mechanisms

Target-

Independent

Source

Mapping

Tools

Target-

Dependent

Adaptation

Profiling &

Visualization
Mapping

Directives

Compile

Target-

Dependent

Executable

We need Power Tools for Parallel Programming.
Conventional Programming Systems are Hand Tools

Programmer

Architecture Tools

Programming

Parallelism

Heterogeneity

Hierarchy

Power

25x Efficiency
with 2.2x from process

“Super” Computing
From Super Computers to Super Phones

