Run-time operating system environment

DOE HPC Operations Review
San Francisco, November 5-6, 2013
Run-time operating system environment, including logging, monitoring, schedulers, and allocations.
Breakout participants

- Adam Bertsch, LLNL *
- Steve Monk, SNL *
- Reese Baird, LANL
- Kevin Harms, ANL
- Doug Jacobsen, LBL
- Jason Hill, ORNL
- Sue Kelly, SNL
- Larry Pezzaglia, LBL
- Jay Srinivasan, LBL

* Denotes breakout session lead
Processes (scope of activity)

What needs to be done?

- Monitoring
 - monitoring for verification of bring up..talk to everything
 - nodediag configuration is setup to match the machine hardware configs
 - Ability to gather diag. info is important and should be specified in the RFP

- Resource manager and job scheduler configured
 - Multiple phases of allocation structure
 - early users have resource restrictions (time, node count, etc)
 - friendly users at first

- OS image build:
 - Use tools such as Cfengine, Xcat. GMI etc.
 - version control is very important!
 - nice if tools are portable to black box vendor gear example RHEL with TOSS tools running on Sequoia
Processes (scope of activity), cont.

What begins first: timeline for activities (before or after hardware)?

- **Before:**
 - Model with virtual machines to help build configuration
 - Obtain information required for integration (e.g. MAC addresses)
 - Work with vendor to ensure support for HW/SW environment
 - Process planning

- **After:**
 - Most of this process happens here
Processes (scope of activity), cont.

What is the role of early hardware access (either locally or remotely) and prototype systems?

- Not just compute nodes, but other infrastructure as well
 - Switches, PDUs, etc
- Remote:
 - difficult for sys-admin activity
 - can be helpful to find issues early
- Local:
 - connectivity, physical access
 - validate hardware with OS image
 - BIOS settings, EDAC
Processes (scope of activity), cont.

What is the role of vendor partnerships?

- Early: verify the run time OS works
- Early: verify the monitoring tools function correctly
- On-going: consistent and updatable firmware is important
- On-going: support of new versions of operating system
 - vendor supplied OS can cause some risks to moving forward
 - security risks from vendor being behind with supported version
 - moving forward takes you off of vendor supported configuration
Processes (scope of activity), cont.

What are the roles of research and design and engineering?

- Build your own image/modified site configurations require an on-going local design and research effort (e.g. TOSS rolling upgrades)
- Proactive monitoring and fault model identification
- Node provisioning (e.g. Open Stack)
- Tuning (hardware and software)
- working with component manufacturers
What are the roles of research and design and engineering (NRE)?

NRE:

- Vendors don’t develop these features without us funding it
 - Blue Gene Q and dynamically linked libraries
 - Lustre contracts to enable new features etc. (Lustre Center of Excellence)
 - Power monitoring and control, Burst Buffer etc.
 - OpenSFS, IB trade association can be NRE like
Processes (scope of activity), cont.

What resiliency activities are executed (for example, redundancy)

- Repeatable OS image and cluster configuration allows for quick cluster recreation
 - image tracking is important!
- Monitoring: event based needs validation
 - poll model or verify that your push happens
- Hardware failure scenarios and their impact on the OS are good to know early on
 - does your redundancy work? e.g. dual fed UPS/House racks are only as resilient as a single power supply
 - keep the tests as simple as possible
 - can the monitoring system detect a loss in redundancy
- HA on resource managers and schedulers
 - single point of failure on some vendor systems
Organization and management

What is the structure of the integration and preparation teams?

- Project Manager for large installations
 - cross functional teams underneath
Organization and management, cont.

What are the necessary skills for the activity team?

- Skills of core admin/integration teams are typically sufficient for the scope of this effort
 - sys-admin, development environment and user services
- testing/QA skills are very important and may not be a “normal” skill of a typical sys-admin
Experiences and lessons learned

What were the good and bad experiences and lessons learned?

Good:
- Common cluster OS images (e.g. TOSS)

Bad:
- Cluster images provided by Hardware vendor can be problematic and not adaptable to site needs

Lessons learned:
- Limit changes to allocation policies
- Sameness is a huge win!
- Verification of monitoring tools
- Saving monitoring data
Experiences and lessons learned, cont.

What were the most productive activities?

- Investing in Tools development can save a bunch of future time
- Develop monitoring for previously observed conditions
 - it’s an iterative process
- Monitor early, Monitor often!
Experiences and lessons learned, cont.

What were the resiliency experiences?

- Scheduler failures fixed (ANL)
 - continued development improve resiliency over time
- “Yank” testing can expose problems in your redundant plan
Experiences and lessons learned, cont.

What was the highest risk? Was it a surprise or expected?

- Liquid cooled machines have a whole new set of variables…surprise
- Tuning of shared library codes related to node counts…somewhat of a surprise
- Expect to execute risk mitigation on high risk areas related to scaling, such as file systems, interconnects, etc.
Most significant observation

Provide a summary statement for the most significant observation

- configuration management with vigorous validation
Effort estimate

How big of an effort was this?

- At least 5 staff years for a big machine
 - higher or lower