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Rayleigh-Taylor instability is an unsettled issue. E

r il

* Does the flow forget its initial conditions?

* |s the flow self-similar?

e What is alpha?

* How does mixing influence the growth rate?
* When does the flow become fully turbulent?
* What is the Reynolds number dependence?

* How should subgrid-scale models be
initialized?

Results from high-resolution numerical simulations can be
used to elucidate these issues and guide modeling.
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The Navier-Stokes equations have been around
for 185 years... E
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...nevertheless, fluid mechanics is not a dry subject.




The governing equations are solved with
high-resolution numerical methods.

> 10th-order compacthade spatial. derlvatlveé

> 3rd-order predlctor-corrector tlmeste z

» Vertically expanding
grid is matched to a
potential-flow solution
in the far field.




Paris is the birthplace of the Navier-Stokes :
equations as well as some key solution methods.

George Stokes

Who's
not
French?

Joseph Fourier Henri Padé WC-WPCTM10°5



Setup for Rayleigh-Taylor DNS:

Vv V. V V V

vV VY

3:1 density ratio (Atwood number = 0.5)
Schmidt number =v/D =1
Grid spacing A = (Kolmogorov scale)

3072 x 3072 x 3072 grid points

Error function for diffuse initial interface (5 grid points
thick) with horizontally perturbed position

Periodic side boundaries
Potential-flow vertical boundaries at early times

Free-slip walls at top and bottom boundaries

Viscous and diffusion scales are resolved.
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Direct Numerical Simulation serves as a
low-Re “numerical experiment”

DNS resolves all relevant scales in turbulent
flow (inertial, dissipation, and diffusion);
there are no model approximations.

Turbulence is inherently three-dimensional.

DNS is limited to low to moderate Reynolds
numbers, constrained by computer resources.

To reach a fully turbulent state (e.g., mixing transition), the outer-
scale Reynolds number must exceed Re > 104 (microscale Re, > 102).

The range of scales (< number of grid points N) in any direction is
AIm ~ Re34; hence the cost of DNS ~ N* ~ Re? (assuming perfect
parallel scaling). I

DNS needs large resources to reach higher Re.

BGI/L is the fastest computer in the world.
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There is not much pure heavy fluid in the spikes. E

i
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There is not much pure light fluid in the bubbles. E
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Gravity and initial perturbations set
characteristic length and time scales. E

Dominant wavelength: | =27-2 , l,=1(t=0)
T E(k)dk

0

P2~ P —1/2

1/2
- lo
Corresponding timescale: 7=|— . A=
P2t P

Ag

Initial spectrum peaked at mode 96.
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Outer-scale Reynolds number reaches 32,000. E
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H is based on the 1%
concentration
threshold.

Re ~ 104 (Re, ~ 102)
marks the beginning
of the turbulent
regime and the
formation of an
inertial range in the
energy spectrum.

Re crosses 10,000 around t/t = 19.
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Spectra develop scale separation and
inertial ranges at late time. E

Production and Dissipation Spectra Velocity and Density Spectra

kP(K) t/T = 15,20,25,30

1 10 100 1000 1 10 100 1000
wave number wave number

Separation > 10 for t/t > 19. Kolmogorov spectrum for w.
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Peak of energy spectrum follows a k2 trajectory once the E
flow becomes self-similar. (see Olivier Poujade’s talk) »
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Growth and mixing are characterized in terms E
of a product function X,. A

Heavy-fluid mole fraction: X = P =h X, = l
P2— P 2
X /X, if X <X,

Product (mixed fluid): X (X) = (1- X) /(1= X_) if X > X
g s

Product thickness: “:ixed“eSS:
J {(X;()dz
1= T X, ((X))dz 5=
- ] %, (X))dz

Integral measure of mix height is insensitive
to statistical fluctuations.
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In the self-similar regime, (dh/dt)?=40Agh E
(Ristorcelli & Clark, JFM 2004 and Jacobs & Dalziel, JFM 2005). £

0.14 —

0.12

0.1

0.08

0.04

0.02

0.06

Reynolds number

1 | 1 1 1 1 | | 1 1 1 1 1 1 1
15 20 25 30
t/t

h, relates to the
spectrum of initial
perturbations.

The linear term never
completely goes
away.

Using h/Agt?, larger
simulations, run to
later times, give

smaller Q.

There is a slight but
steady increase for
Re>10,000.

h = aAgt? + 2(aAgh, )%t + h,
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Many models assume a constant ratio of kinetic
energy to released potential energy. E

Energy budget
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Potential energy 6P
is converted to
kinetic energy K,
which cascades

] down to small

. scales where it is

: removed by

heat dissipation V.

— Alpha Group derived
e S K,/6P = 120
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K/OP rises steadily for Re > 10,000.
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The mixing rate lags the entrainment rate when
the flow enters the turbulent regime. E

09 . T (X, (X))dz
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Ever bigger blobs have to be broken down to ever finer scales.
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Surface area exhibits weak Re dependence for E
Re>10,000. =
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Area of equimolar surface scales with Taylor microscale.
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Self-similarity gives: A~h"4~t12  n~h-18_t-1/4
(Ristorcelli & Clark, JFM 2004). E

Taylor and Kolmogorov microscales
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Taylor microscales (A;)
stay anisotropic.

Kolmogorov microscales

(n;) become isotropic by
late time.
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DNS confirms moment similarity predictions except for A,.
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Enstrophy becomes isotropic near midplane E

only at very late time.
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Flow near bubble and spike fronts is always highly anisotropic.

WC-IWPCTM10-20



Similar trends were observed in a previous
11523 LES (Cook, Cabot & Miller, JFM 2004).
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LES results suggest
that some quantities
may asymptote at
later times.
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Shallower slope of density spectrum is
observed in both DNS and LES.
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DNS of R-T instability at Re up to 32,000
yields some surprises. E

oL cannot be determined by plotting h vs. Agt2.

Kinetic/Potential energy ratio keeps rising.

Taylor microscales are always anisotropic.
Kolmogorov scales and enstrophy eventually become isotropic.
Flow is weakly Reynolds number dependent for Re>10,000.

How should growth and mixing curves be extrapolated to very
high Reynolds number regimes?

Extremely large simulations are required
to escape initial, boundary, and low-Re effects
and obtain good statistical samples.
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