
Page 1 of 11 
(UCRL-CODE-2003-016) 

/*****************************************************************************\ 
*                                                                             * 
*       Copyright (c) 2003, The Regents of the University of California       * 
*     See the file COPYRIGHT for a complete copyright notice and license.     * 
*                                                                             * 
\*****************************************************************************/ 
 
                                 IOR USER GUIDE 
 
Index: 
  * Basics 
      1.  Description 
      2.  Building IOR 
      3.  Running IOR 
      4.  Options 
 
  * More Information 
      5.  Option details 
      6.  Verbosity levels 
      7.  Using Scripts 
 
  * Troubleshooting 
      8.  Compatibility with older versions 
 
  * Frequently Asked Questions 
      9.  How do I . . . ? 
 
 
******************* 
* 1.  DESCRIPTION * 
******************* 
IOR version 2 is a complete rewrite of the original IOR (Interleaved-Or-Random) 
version 1 code.  IOR can be used for testing performance of parallel file 
systems using various interfaces and access patterns.  IOR uses MPI for process 
synchronization. 
 
 
******************* 
* 2. BUILDING IOR * 
******************* 
Build Instructions: 
 
  Type 'gmake [posix|mpiio|hdf5|ncmpi|all]' from the IOR/ directory.  In 
  IOR/src/C, the file Makefile.config currently has settings for AIX, Linux, 
  OSF1 (TRU64), and IRIX64 to model on.  Note that MPI must be present for 
  building/running IOR, and that MPI I/O must be available for MPI I/O, HDF5, 
  and Parallel netCDF builds.  As well, HDF5 and Parallel netCDF libraries are 
  necessary for those builds.  All IOR builds include the POSIX interface. 
 
 
****************** 
* 3. RUNNING IOR * 
****************** 
Two ways to run IOR: 
 
  * Interactive command line with arguments -- executable followed by command 
    line options. 



Page 2 of 11 
(UCRL-CODE-2003-016) 

 
    E.g., to execute:  IOR -w -r -o filename 
    This performs a write and a read to the file 'filename'. 
 
  * Interactive command line with scripts -- any arguments on the command line 
    will establish the default for the test run, but a script may be used in 
    conjunction with this for varying specific tests during an execution of the 
    code. 
 
    E.g., to execute:  IOR -W -f script 
    This defaults all tests in 'script' to use write data checking. 
 
 
************** 
* 4. OPTIONS * 
************** 
These options are to be used on the command line. E.g., 'IOR -a POSIX -b 4K'. 
  -a S  api --  API for I/O [POSIX|MPIIO|HDF5|NCMPI] 
  -b N  blockSize -- contiguous bytes to write per task (e.g.: 8, 4k, 2m, 1g) 
  -B    useO_DIRECT -- uses O_DIRECT for POSIX, bypassing I/O buffers 
  -c    collective -- collective I/O 
  -C    reorderTasks -- changes task ordering to n+1 ordering for readback 
  -d N  interTestDelay -- delay between reps in seconds 
  -D N  deadlineForStonewalling -- seconds before stopping write or read phase 
  -e    fsync -- perform fsync upon POSIX write close 
  -E    useExistingTestFile -- do not remove test file before write access 
  -f S  scriptFile -- test script name 
  -F    filePerProc -- file-per-process 
  -g    intraTestBarriers -- use barriers between open, write/read, and close 
  -G N  setTimeStampSignature -- set value for time stamp signature 
  -h    showHelp -- displays options and help 
  -H    showHints -- show hints 
  -i N  repetitions -- number of repetitions of test 
  -I    individualDataSets -- datasets not shared by all procs [not working] 
  -j N  outlierThreshold -- warn on outlier N seconds from mean 
  -J N  setAlignment -- HDF5 alignment in bytes (e.g.: 8, 4k, 2m, 1g) 
  -k    keepFile -- don't remove the test file(s) on program exit 
  -K    keepFileWithError  -- keep error-filled file(s) after data-checking 
  -l    storeFileOffset -- use file offset as stored signature 
  -m    multiFile -- use number of reps (-i) for multiple file count 
  -n    noFill -- no fill in HDF5 file creation 
  -N N  numTasks -- number of tasks that should participate in the test 
  -o S  testFile -- full name for test 
  -O S  string of IOR directives (-O checkRead=1,lustreStripeCount=32) 
  -p    preallocate -- preallocate file size 
  -P    useSharedFilePointer -- use shared file pointer [not working] 
  -q    quitOnError -- during file error-checking, abort on error 
  -r    readFile -- read existing file 
  -R    checkRead -- check read after read 
  -s N  segmentCount -- number of segments 
  -S    useStridedDatatype -- put strided access into datatype [not working] 
  -t N  transferSize -- size of transfer in bytes (e.g.: 8, 4k, 2m, 1g) 
  -T N  maxTimeDuration -- max time in minutes to run tests 
  -u    uniqueDir -- use unique directory name for each file-per-process 
  -U S  hintsFileName -- full name for hints file 
  -v    verbose -- output information (repeating flag increases level) 
  -V    useFileView -- use MPI_File_set_view  



Page 3 of 11 
(UCRL-CODE-2003-016) 

  -w    writeFile -- write file 
  -W    checkWrite -- check read after write 
  -x    singleXferAttempt -- do not retry transfer if incomplete  
  -z    randomOffset -- access is to random, not sequential, offsets 
 
NOTES: * S is a string, N is an integer number. 
       * For transfer and block sizes, the case-insensitive K, M, and G 
         suffices are recognized.  I.e., '4k' or '4K' is accepted as 4096. 
 
 
********************* 
* 5. OPTION DETAILS * 
********************* 
For each of the general settings, note the default is shown in brackets. 
 
GENERAL: 
======== 
  * api                  - must be set to one of POSIX, MPIIO, HDF5, or NCMPI 
                           depending on test [POSIX] 
 
  * testFile             - name of the output file [testFile] 
                           NOTE: with filePerProc set, the tasks can round  
                                 robin across multiple file names '-o S@S@S' 
 
  * hintsFileName        - name of the hints file [] 
 
  * repetitions          - number of times to run each test [1] 
 
  * multiFile            - creates multiple files for single-shared-file or 
                           file-per-process modes; i.e. each iteration creates 
                           a new file [0] 
 
  * reorderTasks         - reorders tasks for writing/reading neighbor's 
                           data from different nodes [0] 
 
  * quitOnError          - upon error encountered on checkWrite or checkRead, 
                           display current error and then stop execution; 
                           if not set, count errors and continue [0] 
 
  * numTasks             - number of tasks that should participate in the test 
                           [0] 
                           NOTE: 0 denotes all tasks 
 
  * interTestDelay       - this is the time in seconds to delay before 
                           beginning a write or read in a series of tests [0] 
                           NOTE: it does not delay before a check write or 
                                 check read 
 
  * outlierThreshold     - gives warning if any task is more than this number 
                           of seconds from the mean of all participating tasks. 
                           If so, the task is identified, its time (start, 
                           elapsed create, elapsed transfer, elapsed close, or 
                           end) is reported, as is the mean and standard 
                           deviation for all tasks.  The default for this is 0, 
                           which turns it off.  If set to a positive value, for 
                           example 3, any task not within 3 seconds of the mean 
                           displays its times. [0] 



Page 4 of 11 
(UCRL-CODE-2003-016) 

 
  * intraTestBarriers    - use barrier between open, write/read, and close [0] 
 
  * uniqueDir            - create and use unique directory for each 
                           file-per-process [0] 
 
  * writeFile            - writes file(s), first deleting any existing file [1] 
                           NOTE: the defaults for writeFile and readFile are 
                                 set such that if there is not at least one of 
                                 the following -w, -r, -W, or -R, it is assumed 
                                 that -w and -r are expected and are 
                                 consequently used -- this is only true with 
                                 the command line, and may be overridden in 
                                 a script 
 
  * readFile             - reads existing file(s) (from current or previous 
                           run) [1] 
                           NOTE: see writeFile notes 
 
  * filePerProc          - accesses a single file for each processor; default 
                           is a single file accessed by all processors [0] 
 
  * checkWrite           - read data back and check for errors against known 
                           pattern; can be used independently of writeFile [0] 
                           NOTES: * data checking is not timed and does not 
                                    affect other performance timings 
                                  * all errors tallied and returned as program 
                                    exit code, unless quitOnError set 
 
  * checkRead            - reread data and check for errors between reads; can 
                           be used independently of readFile [0] 
                           NOTE: see checkWrite notes 
 
  * keepFile             - stops removal of test file(s) on program exit [0] 
 
  * keepFileWithError    - ensures that with any error found in data-checking, 
                           the error-filled file(s) will not be deleted [0] 
 
  * useExistingTestFile  - do not remove test file before write access [0] 
 
  * segmentCount         - number of segments in file [1] 
                           NOTES: * a segment is a contiguous chunk of data 
                                    accessed by multiple clients each writing/ 
                                    reading their own contiguous data; 
                                    comprised of blocks accessed by multiple 
                                    clients 
                                  * with HDF5 this repeats the pattern of an 
                                    entire shared dataset 
 
  * blockSize            - size (in bytes) of a contiguous chunk of data 
                           accessed by a single client; it is comprised of one 
                           or more transfers [1048576] 
 
  * transferSize         - size (in bytes) of a single data buffer to be 
                           transferred in a single I/O call [262144] 
 
  * verbose              - output information [0] 



Page 5 of 11 
(UCRL-CODE-2003-016) 

                           NOTE: this can be set to levels 0-5 on the command 
                                 line; repeating the -v flag will increase 
                                 verbosity level 
 
  * setTimeStampSignature - set value for time stamp signature [0] 
                            NOTE: used to rerun tests with the exact data 
                                  pattern by setting data signature to contain 
                                  positive integer value as timestamp to be 
                                  written in data file; if set to 0, is 
                                  disabled 
 
  * showHelp             - display options and help [0] 
 
  * storeFileOffset      - use file offset as stored signature when writing 
                           file [0] 
                           NOTE: this will affect performance measurements 
 
  * maxTimeDuration      - max time in minutes to run tests [0] 
                           NOTES: * setting this to zero (0) unsets this option 
                                  * this option allows the current read/write 
                                    to complete without interruption 
 
  * deadlineForStonewalling - seconds before stopping write or read phase [0] 
                           NOTES: * used for measuring the amount of data moved 
                                    in a fixed time.  After the barrier, each 
                                    task starts its own timer, begins moving 
                                    data, and the stops moving data at a pre- 
                                    arranged time.  Instead of measuring the 
                                    amount of time to move a fixed amount of 
                                    data, this option measures the amount of 
                                    data moved in a fixed amount of time.  The 
                                    objective is to prevent tasks slow to 
                                    complete from skewing the performance.  
                                  * setting this to zero (0) unsets this option 
                                  * this option is incompatible w/data checking 
 
  * randomOffset         - access is to random, not sequential, offsets [0] 
                           NOTES: * this option is currently incompatible with: 
                                    -checkRead 
                                    -storeFileOffset 
                                    -MPIIO collective or useFileView 
                                    -HDF5 or NCMPI 
 
 
POSIX-ONLY: 
=========== 
  * useO_DIRECT          - use O_DIRECT for POSIX, bypassing I/O buffers [0] 
 
  * singleXferAttempt    - will not continue to retry transfer entire buffer 
                           until it is transferred [0] 
                           NOTE: when performing a write() or read() in POSIX, 
                                 there is no guarantee that the entire 
                                 requested size of the buffer will be 
                                 transferred; this flag keeps the retrying a 
                                 single transfer until it completes or returns 
                                 an error 
 



Page 6 of 11 
(UCRL-CODE-2003-016) 

  * fsync                - perform fsync after POSIX write close [0] 
 
MPIIO-ONLY: 
=========== 
  * preallocate          - preallocate the entire file before writing [0] 
 
  * useFileView          - use an MPI datatype for setting the file view option 
                           to use individual file pointer [0] 
                           NOTE: default IOR uses explicit file pointers 
 
  * useSharedFilePointer - use a shared file pointer [0] (not working) 
                           NOTE: default IOR uses explicit file pointers 
 
  * useStridedDatatype   - create a datatype (max=2GB) for strided access; akin 
                           to MULTIBLOCK_REGION_SIZE [0] (not working) 
 
HDF5-ONLY: 
========== 
  * individualDataSets   - within a single file each task will access its own 
                           dataset [0] (not working) 
                           NOTE: default IOR creates a dataset the size of 
                                 numTasks * blockSize to be accessed by all 
                                 tasks 
  
  * noFill               - no pre-filling of data in HDF5 file creation [0] 
 
  * setAlignment         - HDF5 alignment in bytes (e.g.: 8, 4k, 2m, 1g) [1] 
 
MPIIO-, HDF5-, AND NCMPI-ONLY: 
============================== 
  * collective           - uses collective operations for access [0] 
 
  * showHints            - show hint/value pairs attached to open file [0] 
                           NOTE: not available in NCMPI 
 
LUSTRE-SPECIFIC: 
================ 
  * lustreStripeCount    - set the lustre stripe count for the test file(s) [0] 
 
  * lustreStripeSize     - set the lustre stripe size for the test file(s) [0] 
 
  * lustreStartOST       - set the starting OST for the test file(s) [-1] 
 
  * lustreIgnoreLocks    - disable lustre range locking [0] 
 
 
*********************** 
* 6. VERBOSITY LEVELS * 
*********************** 
The verbosity of output for IOR can be set with -v.  Increasing the number of 
-v instances on a command line sets the verbosity higher. 
 
Here is an overview of the information shown for different verbosity levels: 
  0 - default; only bare essentials shown 
  1 - max clock deviation, participating tasks, free space, access pattern, 
      commence/verify access notification w/time 
  2 - rank/hostname, machine name, timer used, individual repetition 



Page 7 of 11 
(UCRL-CODE-2003-016) 

      performance results, timestamp used for data signature 
  3 - full test details, transfer block/offset compared, individual data 
      checking errors, environment variables, task writing/reading file name, 
      all test operation times 
  4 - task id and offset for each transfer 
  5 - each 8-byte data signature comparison (WARNING: more data to STDOUT 
      than stored in file, use carefully) 
 
 
******************** 
* 7. USING SCRIPTS * 
******************** 
 
IOR can use a script with the command line.  Any options on the command line 
will be considered the default settings for running the script.  (I.e., 
'IOR -W -f script' will have all tests in the script run with the -W option as 
default.)  The script itself can override these settings and may be set to run 
run many different tests of IOR under a single execution.  The command line is: 
 
  IOR/bin/IOR -f script 
 
In IOR/scripts, there are scripts of test cases for simulating I/O behavior of 
various application codes.  Details are included in each script as necessary. 
 
An example of a script: 
===============> start script <=============== 
IOR START 
  api=[POSIX|MPIIO|HDF5|NCMPI] 
  testFile=testFile 
  hintsFileName=hintsFile 
  repetitions=8 
  multiFile=0 
  interTestDelay=5 
  readFile=1 
  writeFile=1 
  filePerProc=0 
  checkWrite=0 
  checkRead=0 
  keepFile=1 
  quitOnError=0 
  segmentCount=1 
  blockSize=32k 
  outlierThreshold=0 
  setAlignment=1 
  transferSize=32 
  singleXferAttempt=0 
  individualDataSets=0 
  verbose=0 
  numTasks=32 
  collective=1 
  preallocate=0 
  useFileView=0 
  keepFileWithError=0 
  setTimeStampSignature=0 
  useSharedFilePointer=0 
  useStridedDatatype=0 
  uniqueDir=0 



Page 8 of 11 
(UCRL-CODE-2003-016) 

  fsync=0 
  storeFileOffset=0 
  maxTimeDuration=60 
  deadlineForStonewalling=0 
  useExistingTestFile=0 
  useO_DIRECT=0 
  showHints=0 
  showHelp=0 
RUN 
  # additional tests are optional 
  <snip> 
RUN 
  <snip> 
RUN 
IOR STOP 
===============> stop script <=============== 
 
NOTES: * Not all test parameters need be set.  The defaults can be viewed in 
         IOR/src/C/defaults.h.  
       * White space is ignored in script, as are comments starting with '#'. 
 
 
**************************************** 
* 8. COMPATIBILITY WITH OLDER VERSIONS * 
**************************************** 
1)  IOR version 1 (c. 1996-2002) and IOR version 2 (c. 2003-present) are 
    incompatible.  Input decks from one will not work on the other.  As version 
    1 is not included in this release, this shouldn't be case for concern.  All 
    subsequent compatibility issues are for IOR version 2. 
 
2)  IOR versions prior to release 2.8 provided data size and rates in powers 
    of two.  E.g., 1 MB/sec referred to 1,048,576 bytes per second.  With the 
    IOR release 2.8 and later versions, MB is now defined as 1,000,000 bytes 
    and MiB is 1,048,576 bytes. 
 
3)  In IOR versions 2.5.3 to 2.8.7, IOR could be run without any command line 
    options.  This assumed that if both write and read options (-w -r) were 
    omitted, the run with them both set as default.  Later, it became clear 
    that in certain cases (data checking, e.g.) this caused difficulties.  In 
    IOR versions 2.8.8 and later, if not one of the -w -r -W or -R options is 
    set, then -w and -r are set implicitly. 
 
 
********************************* 
* 9. FREQUENTLY ASKED QUESTIONS * 
********************************* 
HOW DO I PERFORM MULTIPLE DATA CHECKS ON AN EXISTING FILE? 
 
  Use this command line:  IOR -k -E -W -i 5 -o file 
 
  -k keeps the file after the access rather than deleting it 
  -E uses the existing file rather than truncating it first 
  -W performs the writecheck 
  -i number of iterations of checking 
  -o filename 
 
  On versions of IOR prior to 2.8.8, you need the -r flag also, otherwise 



Page 9 of 11 
(UCRL-CODE-2003-016) 

  you'll first overwrite the existing file.  (In earlier versions, omitting -w 
  and -r implied using both.  This semantic has been subsequently altered to be 
  omitting -w, -r, -W, and -R implied using both -w and -r.) 
 
  If you're running new tests to create a file and want repeat data checking on  
  this file multiple times, there is an undocumented option for this.  It's -O  
  multiReRead=1, and you'd need to have an IOR version compiled with the  
  USE_UNDOC_OPT=1 (in iordef.h).  The command line would look like this: 
 
  IOR -k -E -w -W -i 5 -o file -O multiReRead=1 
 
  For the first iteration, the file would be written (w/o data checking).  Then 
  for any additional iterations (four, in this example) the file would be 
  reread for whatever data checking option is used. 
 
 
HOW DOES IOR CALCULATE PERFORMANCE? 
 
  IOR performs get a time stamp START, then has all participating tasks open a 
  shared or independent file, transfer data, close the file(s), and then get a 
  STOP time.  A stat() or MPI_File_get_size() is performed on the file(s) and 
  compared against the aggregate amount of data transferred.  If this value 
  does not match, a warning is issued and the amount of data transferred as 
  calculated from write(), e.g., return codes is used.  The calculated 
  bandwidth is the amount of data transferred divided by the elapsed 
  STOP-minus-START time. 
 
  IOR also gets time stamps to report the open, transfer, and close times. 
  Each of these times is based on the earliest start time for any task and the 
  latest stop time for any task.  Without using barriers between these 
  operations (-g), the sum of the open, transfer, and close times may not equal 
  the elapsed time from the first open to the last close. 
 
 
HOW DO I ACCESS MULTIPLE FILE SYSTEMS IN IOR? 
 
  It is possible when using the filePerProc option to have tasks round-robin 
  across multiple file names.  Rather than use a single file name '-o file', 
  additional names '-o file1@file2@file3' may be used.  In this case, a file 
  per process would have three different file names (which may be full path 
  names) to access.  The '@' delimiter is arbitrary, and may be set in the 
  FILENAME_DELIMITER definition in iordef.h. 
 
  Note that this option of multiple filenames only works with the filePerProc 
  -F option.  This will not work for shared files. 
 
 
HOW DO I BALANCE LOAD ACROSS MULTIPLE FILE SYSTEMS? 
 
  As for the balancing of files per file system where different file systems 
  offer different performance, additional instances of the same destination 
  path can generally achieve good balance. 
 
  For example, with FS1 getting 50% better performance than FS2, set the '-o' 
  flag such that there are additional instances of the FS1 directory.  In this 
  case, '-o FS1/file@FS1/file@FS1/file@FS2/file@FS2/file' should adjust for 
  the performance difference and balance accordingly. 



Page 10 of 11 
(UCRL-CODE-2003-016) 

 
 
HOW DO I USE STONEWALLING? 
 
  To use stonewalling (-D), it's generally best to separate write testing from 
  read testing.  Start with writing a file with '-D 0' (stonewalling disabled) 
  to determine how long the file takes to be written.  If it takes 10 seconds 
  for the data transfer, run again with a shorter duration, '-D 7' e.g., to 
  stop before the file would be completed without stonewalling.  For reading, 
  it's best to create a full file (not an incompletely written file from a 
  stonewalling run) and then run with stonewalling set on this preexisting 
  file.  If a write and read test are performed in the same run with 
  stonewalling, it's likely that the read will encounter an error upon hitting 
  the EOF.  Separating the runs can correct for this.  E.g., 
 
  IOR -w -k -o file -D 10  # write and keep file, stonewall after 10 seconds 
  IOR -r -E -o file -D 7   # read existing file, stonewall after 7 seconds 
 
  Also, when running multiple iterations of a read-only stonewall test, it may 
  be necessary to set the -D value high enough so that each iteration is not 
  reading from cache.  Otherwise, in some cases, the first iteration may show 
  100 MB/s, the next 200 MB/s, the third 300 MB/s.  Each of these tests is 
  actually reading the same amount from disk in the allotted time, but they 
  are also reading the cached data from the previous test each time to get the 
  increased performance.  Setting -D high enough so that the cache is 
  overfilled will prevent this.   
 
 
HOW DO I BYPASS CACHING WHEN READING BACK A FILE I'VE JUST WRITTEN? 
 
  One issue with testing file systems is handling cached data.  When a file is 
  written, that data may be stored locally on the node writing the file.  When 
  the same node attempts to read the data back from the file system either for 
  performance or data integrity checking, it may be reading from its own cache 
  rather from the file system. 
 
  The reorderTasks '-C' option attempts to address this by having a different 
  node read back data than wrote it.  For example, node N writes the data to 
  file, node N+1 reads back the data for read performance, node N+2 reads back 
  the data for write data checking, and node N+3 reads the data for read data 
  checking, comparing this with the reread data from node N+4.  The objective 
  is to make sure on file access that the data is not being read from cached 
  data. 
 
    Node 0: writes data 
    Node 1: reads data 
    Node 2: reads written data for write checking 
    Node 3: reads written data for read checking 
    Node 4: reads written data for read checking, comparing with Node 3 
 
  The algorithm for skipping from N to N+1, e.g., expects consecutive task 
  numbers on nodes (block assignment), not those assigned round robin (cyclic 
  assignment).  For example, a test running 6 tasks on 3 nodes would expect 
  tasks 0,1 on node 0; tasks 2,3 on node 1; and tasks 4,5 on node 2.  Were the 
  assignment for tasks-to-node in round robin fashion, there would be tasks 0,3 
  on node 0; tasks 1,4 on node 1; and tasks 2,5 on node 2.  In this case, there 
  would be no expectation that a task would not be reading from data cached on 



Page 11 of 11 
(UCRL-CODE-2003-016) 

  a node. 
 
 
HOW DO I USE HINTS? 
 
  It is possible to pass hints to the I/O library or file system layers 
  following this form: 
    'setenv IOR_HINT__<layer>__<hint> <value>' 
  For example: 
    'setenv IOR_HINT__MPI__IBM_largeblock_io true' 
    'setenv IOR_HINT__GPFS__important_hint true' 
  or, in a file in the form: 
    'IOR_HINT__<layer>__<hint>=<value>' 
  Note that hints to MPI from the HDF5 or NCMPI layers are of the form: 
    'setenv IOR_HINT__MPI__<hint> <value>' 
 
 
HOW DO I EXPLICITY SET THE FILE DATA SIGNATURE? 
 
  The data signature for a transfer contains the MPI task number, transfer- 
  buffer offset, and also timestamp for the start of iteration.  As IOR works 
  with 8-byte long long ints, the even-numbered long longs written contain a 
  32-bit MPI task number and a 32-bit timestamp.  The odd-numbered long longs 
  contain a 64-bit transferbuffer offset (or file offset if the '-l' 
  storeFileOffset option is used).  To set the timestamp value, use '-G' or 
  setTimeStampSignature. 
 
 
HOW DO I EASILY CHECK OR CHANGE A BYTE IN AN OUTPUT DATA FILE? 
 
  There is a simple utility IOR/src/C/cbif/cbif.c that may be built.  This is a 
  stand-alone, serial application called cbif (Change Byte In File).  The 
  utility allows a file offset to be checked, returning the data at that 
  location in IOR's data check format.  It also allows a byte at that location 
  to be changed. 
 
 
HOW DO I CORRECT FOR CLOCK SKEW BETWEEN NODES IN A CLUSTER? 
 
  To correct for clock skew between nodes, IOR compares times between nodes, 
  then broadcasts the root node's timestamp so all nodes can adjust by the 
  difference.  To see an egregious outlier, use the '-j' option.  Be sure 
  to set this value high enough to only show a node outside a certain time 
  from the mean. 
 
 
WHAT HAPPENED TO THE GUI? 
 
  In versions of IOR earlier than 2.9.x, there was a GUI available.  Over time 
  it became clear that it wasn't find enough use to warrant maintenance.  It 
  was retired in IOR-2.10.x. 
 


