
Page 1 of 2

Pynamic: The Python Dynamic Benchmark

Summary Version
1.1

Purpose of Benchmark
Pynamic is developed to influence a system’s dynamic loading subsystem design and to
test its ability to handle the heavy use of dynamically linked libraries, which is exhibited
by large Python-based scientific application. Running sequentially (i.e., a single MPI
task), it measures how quickly a system can load the configured number of dynamic
libraries into a process, resolve all the symbols in these libraries, and execute all the
routines defined in them. Running in parallel, the benchmark also captures the scalability
of the subsystem’s handling file I/O loads demanded by the DLL behavior. When a
Python-based program calls on a dynamic Python module at large scale, an I/O request
storm can be generated, leading to unacceptably slow performance and/or denial-of-
service on the file system that this module resides.

Characteristics of Benchmark
Pynamic is based on pyMPI (http://pympi.sourceforge.net), an MPI extension to the
Python programming language. The benchmark adds a code generator that creates a user-
specified number of Python dynamic modules and utility libraries whose aggregate size is
also configurable. Pynamic employs these dynamic objects to emulate a wide range of
dynamic linking and loading behavior exhibited by Python-based scientific programs. For
example, in one mode, Pynamic directly links in all these modules at link time, creating
the pynamic-pyMPI executable. In another mode, Pynamic dynamically loads these
modules at runtime via Python’s import construct into a vanilla pyMPI.
While the benchmark supports configurable emulation of the DLL usage, we recommend
large configurations in terms of the number and the quantity of Python dynamic modules
and of utility libraries to be used for testing. Making full use of some of Python’s popular
features have led to applications that access extremely high numbers of DLLs. For
example, one of LLNL’s important multiphysics applications uses nearly five hundred
dynamic libraries. With the appropriate parameters, Pynamic can build dummy
applications that closely model the footprint of important Python-based multiphysics
codes.

Pynamic provides three performance metrics to capture each of three phases pertaining to
the DLL usage: the startup time for library loading; the module-import time for symbol
resolution; and the visit time for execution. However, because contemporary dynamic
loaders provide parameters that allow shifting of such overheads from one phase to
another, the summation of all three metrics should form the overall dynamic loader
performance metric.

Location of Benchmark
https://computation.llnl.gov/casc/Pynamic/pynamic.htm

Page 2 of 2

Mechanics of Building Benchmark
Pynamic includes the source for pyMPI, which requires a Python installation. In addition,
two of the key Pynamic files are themselves Python scripts. The required configuration
parameters are as follows:

./config_pynamic.py 496 1850 –e –u 215 1850 –n 100 –t

This will create a standalone pyMPI executable, as well as a pynamic-pyMPI executable
with all of the DLLs linked in. Pynamic must be built as a dynamically linked executable.

Mechanics of Running Benchmark
srun ./pynamic-pyMPI pynamic_driver.py `date +%s`

srun ./pyMPI pynamic_driver.py `date +%s`

Note: The result of the `date +%s` command must be passed as a command-line
argument in order to get the startup time of Pynamic.

Verification of Results
A successful serial run of Pynamic (i.e., no errors) is sufficient verification of
functionality. The resulting startup + module-import + visit metric provides insight into
the efficiency of the system’s dynamic loading subsystem. A time comparison between
pynamic-pyMPI and pyMPI provides insight into the benefits and the penalties of linking
against the generated shared libraries. Additionally, measuring the time of a cold start
(first invocation) captures the cost of initially loading Pynamic from the file system and
the time of a warm start (subsequent invocations) provides insight into the time savings
from running from a warm disk buffer cache. Finally, the start-up + module-import +
visit metric resulting from a series of scaling runs of Pynamic illustrates the scalability of
the dynamic loading subsystem in handling file I/O loads demanded by the DLL behavior
at scale.

