
Page 1 of 2 
(UCRL-CODE-2000-026) 

UMT 

Summary Version 
1.0 

Purpose of Benchmark 
MPI + OpenMP parallel scaling efficiency, threading compiler test, single CPU performance, 
and Python functionality. 

Characteristics of Benchmark 
This benchmark makes use of both MPI and OpenMP to achieve high levels of parallelism. This 
“hybrid” parallelization model is very important to the LLNL ASC program and key to the 
success of the Sequoia procurement. The amount of data communicated between MPI tasks 
relative to the amount of computation is small. 

The single CPU kernel (advance) instruction mix is roughly 33% load/store, 31% floating point, 
26% fixed point, and 10% branch. The main memory bandwidth need is large. 

Mechanics of Building Benchmark 
There are four files labeled README_<machine name>_INSTALL in the top level of the UMT 
tar file with instructions for building Python and pyMPI on the following platforms: 
chaos_3_x86_elan3, chaos_3_x86_64_ib, aix_5_64_fed, and chaos_3_ia64_elan4. Use these as 
starting points to build Python and pyMPI. The top level also contains a file named make.defs 
that defines the compiler names, flags, etc., used in all lower level Makefiles. Edit this to 
recognize the machine the benchmark is built on and add a definition section for your machine 
with appropriate choices for the make variables. 

Once pyMPI and Python are built, gmake from the top level will build all objects needed for the 
benchmark to function. 

Mechanics of Running Benchmark 
The test to run is located in the python directory. The python script runSuOlson.py is the 
driver. It takes as arguments the quadrature order, number of energy groups, processor 
decomposition, local mesh dimensions, and goal time. Passing -h or –-help to the script 
outputs the valid parameters. For version 1.0 these are: 



Page 2 of 2 
(UCRL-CODE-2000-026) 

usage: runSuOlson.py [options] 

  
options: 
  -h, --help            show this help message and exit 
  -x NX, --numberOfXzones=NX 
                        Number of zones in x-direction (per MPI task).  Default=13. 
  -y NY, --numberOfYzones=NY 
                        Number of zones in y-direction (per MPI task).  Default=13. 
  -z NZ, --numberOfZzones=NZ 
                        Number of zones in z-direction (per MPI task).  Default=13. 
  --Px=PX               Number of mpi tasks in x-direction.  If set to 0, compute on 
the fly.  Default=0 
  --Py=PY               Number of mpi tasks in y-direction.  If set to 0, compute on 
the fly.  Default=0 
  --Pz=PZ               Number of mpi tasks in z-direction.  If set to 0, compute on 
the fly.  Default=0 
  -o SNORDER, --order=SNORDER 
                        SN quadrature order.  Default=12. 
  -g NUMBEROFGROUPS, --groups=NUMBEROFGROUPS 
                        Number of Energy Groups (1,16,64,100).  Default=16. 
  -t GOALTIME, --goaltime=GOALTIME 
                        goal time.  Exact solution known for 0.000334, 0.001055, 
0.003336.  Default=0.000334 

 

The goaltime parameter should be chosen to be one of the three values for which the code can 
compare to the analytic solution for this problem. For the benchmarking runs themselves, use the 
default goaltime, but for testing purposes feel free to use any of the three goaltimes. 

A new grid definition file will automatically be created and used by the run script for each run. 
The grid parameters are controlled by the arguments passed to the run script. In the Test Problem 
document, Zones or N×N×N refer to -x, -y, and -z script arguments. SMS triples in the same 
document refer to --Px, --Py, and --Pz script arguments. 

For example, to run the test with SMS 4,2,2 and Zones=12,13,14 (on SLURM Linux system): 
srun -ppbatch -N4 -n16 ../Install/${SYS_TYPE}/bin/pyMPI 
./runSuOlson.py --Px=4 --Py=2 --Pz=2 -x 12 -y 13 -z 14 
 

Verification of Results 
The performance figure of merit will be computed after the run concludes and will be displayed 
to stdout along with error measurements for the run. Both must be included in the reported 
results. 


