
Big	Data	Analytics	Suite		
Purpose	of	Benchmark	
The	big	data	analytics	suite	includes	unsupervised	and	supervised	machine	learning	algorithms:	K-Means	
clustering,	Principle	Component	Analysis	(PCA),	and	Support	Vector	Machine	(SVM).	The	suite	is	based	
on	R.		

Characteristics	of	Benchmark	
K-Means:	The	benchmark	is	defined	by	computing	the	observation	labels	(class	assignments)	and	
centroids	for	k=2,	3,	and	4.	The	data	should	consist	of	rows	sampled	from	one	of	3	random	normal	
distributions:	one	with	mean	0,	one	with	mean	2,	and	one	with	mean	10.	Each	should	have	variance	1.	
The	rows	should	be	drawn	at	random	from	these	distributions.	To	reduce	the	variance	in	steps	needed	
for	convergence,	the	maximum	number	of	iteration	has	been	set	to	2.	Our	implementation	of	the	
benchmark	can	be	found	at	“benchmarks/r/kmeans.r”.		

PCA:	The	benchmark	is	defined	as	computing	the	first	and	last	of	the	"standard	deviations"	from	a	PCA	
on	a	distributed	matrix	by	way	of	taking	the	square	roots	of	the	eigenvalues	of	the	covariance	matrix.	
The	"first	and	last"	requirement	is	to	avoid	approximate	methods.	Using	the	covariance	matrix	is	
mathematically	equivalent	to	computing	the	SVD	of	the	mean-centered	input	matrix,	although	it	is	
computationally	easier.	The	data	should	be	random	normal.	Our	implementation	of	the	benchmark	can	
be	found	at	“benchmarks/r/princomp.r”.	

SVM:	The	benchmark	consists	of	a	linear	2-class	SVM	fit	using	500	iterations,	calculating	the	feature	
weights.	The	data	should	consist	of	an	intercept	term	together	with	rows	sampled	from	one	of	2	random	
normal	distributions:	one	with	mean	0,	and	one	with	mean	2;	each	should	have	variance	1.	The	rows	
should	be	drawn	at	random	from	these	distributions.		The	SVM	is	not	expected	to	converge	given	the	
number	of	features	and	iterations;	this	allows	for	easier	comparisons	of	benchmarks	as	data	
sizes/layouts	change.	Our	implementation	of	the	benchmark	can	be	found	at	“benchmarks/r/svm.r”.	

Mechanics	of	Building	Benchmark	
1. Install	R	(see	instruction	https://cran.r-project.org/doc/manuals/r-patched/R-admin.html)	
2. Install	rlecuyer,	pbdMPI,	and	kazaam	(under	“benchmarks/source/r”)	in	following	order:	

R	CMD	INSTALL	rlecuyer_0.3-4.tar.gz	
R	CMD	INSTALL	pbdMPI_0.3-3.tar.gz	
R	CMD	INSTALL	kazaam_0.2-0.tar.gz	

Mechanics	of	Running	Benchmark		
Multi-node	benchmarks	(K-Means,	PCA,	SVM)	accepts	a	number	of	“local”	rows	and	“global”	columns.	
The	total	number	of	rows	grows	proportionally	to	the	number	of	MPI	ranks.	Thus,	each	benchmark	
measures	scaling	in	the	weak	sense.	

Run	the	R	code	via:	

mpirun	-np	num_ranks	Rscript	princomp.r	num_local_rows	num_global_cols	

For	example,	to	run	the	PCA	code	with	16	ranks,	250	total	columns,	and	a	total	of	16,000	rows	(local	
number	of	rows	1000),	you	would	run:	

mpirun	-np	16	Rscript	princomp.r	1000	250	

CORAL	class	problem:		

1. Ensemble	of	individual	jobs	of	input	data	size	at	least	1024GB	(feature	columns	is	fixed	at	250)	
for	K-Means,	PCA,	and	SVM	to	fill	up	the	entire	system.	

2. Figure	of	Merit	(FOM)	is	defined	as	total-input-data-size	(in	TB)	/	average-runtime	(in	seconds).	
Note,	the	benchmark	outputs	min,	mean,	and	max	time	of	MPI	ranks,	and	the	max	time	is	taken	
as	the	runtime	of	an	individual	job.					

3. The	overall	improvement	in	FOM	Sbdas	for	big	data	analytic	suite	is	the	geometric	mean	of	
improvements	in	FOM	for	K-Means,	PCA	and	SVM,	i.e.		

𝑆"#$% = 	 𝑆(

)

(*+

+
)

	

where	Si	=	projected	FOMi	/	baseline	FOMi,	and	i	runs	from	K-Means,	PCA,	to	SVM.		
4. Expected	overall	improvement	in	FOM:	50	e.g.		solve	10x	larger	problem	5x	faster.	

Verification	of	Results		
We	use	random	data	in	the	benchmarks	to	keep	the	benchmarks	as	amenable	to	every	hardware	
solution	possible.		We	strongly	believe	this	approach	is	to	the	advantage	of	every	vendor.		However,	this	
makes	the	benchmark	runs	difficult	to	verify.		So,	we	have	included	small	verification	scripts	to	be	run	in	
companion	with	the	benchmarks	themselves.	

	Each	validation	script	should	be	run	on	two	nodes	and	use	the	same	(specified)	kernel	as	its	benchmark	
counterpart.		Each	will	use	the	famous	iris	dataset	of	R.	A.	Fisher	(included).		The	rows	of	the	dataset	
have	been	randomly	shuffled	and	the	species	variable	has	been	coded	to	1=setosa,	2=versicolor,	and	
3=virginica.		Any	other	settings	we	leave	to	the	vendor.		Performance	measurements	are	not	desired,	
only	the	validation.	

Each	of	the	validation	scripts	is	completely	self-contained.		You	can	run	any	of	them	via:	

mpirun	-np	2	Rscript	$BENCHMARK.r	

K-Means:	Using	k=3	centroids	(the	true	value),	and	100	starts	using	seeds	1	to	100,	the	labels	for	each	
observation	should	be	computed.		These	will	be	compared	against	the	true	values	(from	the	'species'	
label	of	the	dataset)	using	[rand	measure]	(https://en.wikipedia.org/wiki/Rand_index).		Take	the	largest	
among	these	values.		This	should	be	greater	than	75%	to	be	considered	successful.	Our	implementation	
of	the	validation	script	can	be	found	at	“validation/r/kmeans.r”.	

PCA:	This	validation	script	shows	that	the	PCA	benchmark	is	working	correctly	by	testing	the	SVD	kernel.		
The	validation	consists	of	reading	the	iris	dataset,	removing	the	species	column,	factoring	the	resulting	
matrix,	and	then	multiplying	the	factored	matrices	(from	SVD)	back	together.		The	mean	absolute	error	

(average	of	the	difference	in	absolute	value)	of	the	two	matrices	should	be	computed.		The	test	passes	if	
this	value	is	less	than	the	square	root	of	machine	epsilon	for	each	type	(as	specified	by	IEEE	754).	Our	
implementation	of	the	validation	script	can	be	found	at	“validation/r/svd.r”.	

SVM:	The	data	consists	of	an	intercept	term	together	with	the	iris	dataset	without	the	species	column.		
The	response	should	be	taken	to	be	1	for	setosa	(coding	1	in	the	species	variable)	and	-1	otherwise.		Use	
a	maximum	of	500	iterations	to	fit	an	SVM	on	the	data	and	response.		Report	the	accuracy	(number	
correctly	predicted).		This	should	be	greater	than	80%.	Our	implementation	of	the	validation	script	can	
be	found	at	“validation/r/svm.r”.	

Figure	of	Merit	on	Titan				
Baseline	FOM	on	Titan:		Size	of	individual	job	=	128	nodes,	Size	of	individual	input	=	1024	GB,	Size	of	
ensemble	=	30		

Benchmarks	 K-Means	 PCA	 SVM	
Projected	Baseline	

FOM	(TB/s)	
1.8	 6.0	 0.24	

	

For	example,	the	calculation	of	the	projected	baseline	FOM	for	PCA:	FOM	=	146*1.024	(TB)	/24.8	(s)		=	
6.03	TB/s,	where	146	is	the	total	number	of	128-node	jobs	that	Titan	can	accommodate,	and	24.8	is	the	
average	“max”	time.			

