
	 1	

KRIPKE
Summary Version

1.2.2-CORAL2 results and benchmark tarball are for git commit a12bce7 from the
release/v1.2.0-CORAL2 branch of the Kripke repo at
https://github.com/LLNL/Kripke/releases/download/v1.2.2-CORAL2/kripke-v1.2.2-CORAL2-
a12bce7.tar.gz

Purpose of Benchmark

Test parallel performance of structured grid discrete ordinates particle transport.

Characteristics of Benchmark

Kripke is a simple, scalable, 3D Sn deterministic particle transport code. Its primary purpose is to
research how data layout, programming paradigms and architectures effect the implementation
and performance of Sn transport. A main goal of Kripke is investigating how different data-
layouts affect instruction, thread and task level parallelism, and what the implications are on
overall solver performance.
See a more detailed description of the code in the README.md file.

Mechanics of Building Benchmark

Step 1: Create a build space (assuming you are starting in the Kripke root directory)

 mkdir build

Step 2: Run CMake in that build space

 cd build
 cmake ..

 For BG/Q, we have a special cache init file that makes things easier:

 cd build
 cmake .. -C../host-configs/bgqos.cmake

Step 3: Now make Kripke:

 make -j8

	 2	

Step 5: Run Kripke's default problem:

 ./bin/kripke.exe

Mechanics of Running Benchmark

The base problem is a 1-node problem sized for a single BG/Q node, and consumes about

• 64	energy	groups	
• 128	directions	(angles)	
• 64x32x32 zones	
• 4th order scattering	
• 10 iterations	
• fully-upwinded sweeps	

Here are 2 examples that run kripke, the first uses 1 MPI task with 64 threads, the second uses 16
MPI tasks with 4 threads per task:	

• OMP_NUM_THREADS=64	srun	-N1	-n1		./bin/kripke.exe	--groups	64	--gset	1	--quad	
128	--dset	128	--legendre	4	--zones	64,32,32	--procs	1,1,1	

• OMP_NUM_THREADS=4		srun	-N1	-n16	./bin/kripke.exe	--groups	64	--gset	1	--quad	
128	--dset	128	--legendre	4	--zones	64,32,32	--procs	4,2,2	

To scale the problem up, we weak-scale the number of zones and MPI ranks, keeping the
problem size and decompostion as "cube" like as possible, so for a 64-node problem:

• OMP_NUM_THREADS=64	srun	-N64	-n64			./bin/kripke.exe	--groups	64	--gset	1	--
quad	128	--dset	128	--legendre	4	--zones	256,128,128	--procs	4,4,4	

• OMP_NUM_THREADS=4		srun	-N64	-n1024	./bin/kripke.exe	--groups	64	--gset	1	--
quad	128	--dset	128	--legendre	4	--zones	256,128,128	--procs	16,8,8	

For the "1/4 of Sequoia" problem we have:

• OMP_NUM_THREADS=64	srun	-N24576	-n24576		./bin/kripke.exe	--groups	64	--
gset	1	--quad	128	--dset	128	--legendre	4	--zones	2048,1024,768	--procs	32,32,24	

• OMP_NUM_THREADS=4		srun	-N24576	-n393216	./bin/kripke.exe	--groups	64	--
gset	1	--quad	128	--dset	128	--legendre	4	--zones	2048,1024,768	--procs	128,64,48	

For the target CORAL-2 problem the total number of zones should be increased to be
2048,2048,1536.

Modifications of the following parameters change the problem definition, and should be
considered fixed:

• --groups	
• --niter	

	 3	

• --sigt	
• --sigs	
• --pmethod	
• --quad	
• --legendre	
• --zones	

Modifications of the following parameters just change problem decomposition, and are fair-game
for tuning:

• --gset	
• --dset	
• --zset	
• --procs	
• OMP_NUM_THREADS	

Figure of Merit (FOM):

There are 4 values printed out at the end of each run: Throughput, Number of unknowns, grind
time, and sweep efficiency.

The FOM we are interested in is throughput, which is the number of unknowns solved per
second per iteration.

Benchmark Verification:

The benchmark delivers correct results if the ‘particle count’ and ‘change’ values printed out
during the solve are consistent with the baseline version.

The convergence behavior of this problem will not change as the problem weak scales in the
number of zones, however as the problem is refined it will converge to a slightly different
solution. Changes to the “Final Particle Count” at a given problem size should be considered
incorrect behavior.

	 4	

Figure-of-Merit Data on BG/Q

Nodes Ranks Threads
/Rank

Zones Memory
(GB)

Solve
Time (sec)

Final Particle
Count

Throughput
(unknowns/
(sec/iter))

1 1 64 64x32x32 10 623 3.742347e+10 8.619823e+06
1 16 4 64x32x32 10 425 3.742347e+10 1.260770e+07
64 64 64 256x128x128 619 632 3.743771e+10 5.437729e+08
64 1024 4 256x128x128 619 434 3.743771e+10 7.912030e+08
4096 4096 64 1024x512x512 39380 666 3.744010e+10 3.302129e+10
4096 65536 4 1024x512x512 39380 468 3.744010e+10 4.700701e+10
24576 24576 64 2048x1024x768 236072 712 3.744099e+10 1.853260e+11
24576 393216 4 2048x1024x768 OOM

Notes:
• Solve	Time	is	reported	in	the	“Timers”	report	as	the	“Solve”	timer.		This	includes	all	

runtime	except	for	“Generate”,	which	does	the	problem	setup.	
• Throughput	is	reported	at	the	end	of	the	run	in	the	“Figures	of	Merit”	report.		This	

is	the	total	number	of	unknowns	(across	all	MPI	tasks),	divided	by	the	“Solve”	timer	
divided	by	the	divided	by	the	number	of	iterations	(10).	

• Final	Particle	Count	is	reported	on	the	last	iteration	line	(“iter	9:”)	in	the	“Steady	
State	Solve”	output.	

• OOM:	The	run	of	24576	nodes	with	4	threads/rank	was	unsuccessful,	as	MPI	
required	too	much	memory	to	complete.	

