
Page 1 of 5

FWQ/FTQ

Summary Version

1.1.0

Purpose of Benchmark

The FWQ and FTQ benchmarks measure hardware and software interference or ‗noise‘ on a

node from the applications perspective. The benchmarks are used within the Sequoia RFP to a

measure compute node hardware and lightweight kernel (LWK) application perceived

interference or noise. Sequoia SOW Section 3.2.4 gives the criteria, using the output of the FWQ

benchmark measurements to characterize an LWK as meeting the requirement for a ―diminutive

noise‖ LWK.

Characteristics of Benchmark

FWQ (fixed work quanta) and FTQ (fixed time quanta) run on each core and hardware thread

within a single node via pthreads. FWQ repetitively performs a fixed amount of work (the work

quanta), measuring the time necessary to complete that work. FTQ repetitively works for a fixed

amount of time (the time quanta), measuring the amount of work that is performed. Both repeat

the measurements multiple times (under command line control). For FTQ, the work performed is

very simple—incrementing a variable repeatedly. For FWQ there are three work choices. The

default is the same as FTQ. FWQ outputs a time file, one per thread. FTQ outputs two files (per

thread)—one with the amount of work performed (one per line), the other with the time

quantums (one per line).

Due to the fixed work approach of FWQ, the data samples can be used to compute useful

statistics (mean, standard deviation and kurtosis) of the scaled noise (sample time minus the

minimum work time and scaled by the minimum work time). These statistics then can be used to

characterize and categorize the amount of noise in a hardware and software environment. Due to

the fixed time quanta approach of FTQ, the work data can be processes with a Fast Fourier

Transform (FFT) in order to determine the temporal frequency of software interference. This is

an extremely useful tool to find sources of periodic interference such as scheduling intervals, the

regular operation of daemons, etc.

Together, FWQ and FTQ are effective benchmarks to measure operating system interruptions or

other disturbances of consistency in cycles delivered to the running threads.

Mechanics of Building Benchmark

FWQ/FTQ are simple to build. It has been tested on Linux, MacOSX, and even under Windows

XP/Vista via cygwin (although the thread affinity system calls must be removed). There is no

configuration step at present, although it is likely that one may emerge if the FWQ/FTQ

configuration options become sophisticated enough. The code directory structure is as follows:

common/ files common to any benchmark code in here. This currently contains platform

independent, high precision timers. The cycle.h file is the redistributable timer header from the

FFTW package.

ftq/ The fixed work quantum and fixed time quantum microbenchmarks. For a

reference on this, see the Sottile/Minnich paper at Cluster 2004, or ask Matt for a copy of this

Page 2 of 5

dissertation. The versions included here are the standard sequential version, a threaded version

with Pthreads, and an OpenMP version.

results/ Put your results here.

octave/ Scripts for analyzing the data

The only wrinkle in porting FWQ/FTQ to another platform may be the timers. For uncommon

systems, one may need to augment the many systems currently configured in the

common/cycle.h file.

To compile single threaded versions of the benchmarks, type:

% make single

You should observe two executables being created: ftq and fwq. Both ftq and fwq have been

tuned so that granularity work quanta used for sampling is much larger than instruction issue rate

fluxuations. For example, by unsetting the parameter MULTIITER in the source files, fwq/ftq

uses a single integer increment operation as the work quantum, while the default fwq/ftq source

uses 32 increments followed by 31 decrements (effectively equivalent to the single ftq count++).

The reason is that one will observe, especially for tiny work quanta, jitter in the data because the

majority (approx 70–80%) of the instructions executed per work quantum are actually branch

and conditional operations. This causes some level of fluctuation in how long a work quantum

takes to execute simply because of the structure of the instruction stream. As the work quantum

increases in granularity, the proportion of work quantum instructions to control flow and

conditional structures becomes more even, and the fluctuations within the data begin to be due to

interference external to FTQ itself (other than apparent cache related, high frequency low level

perturbations).

For FWQ it is important that the ―fixed work‖ performed does not make any memory references:

especially for systems with non-uniform memory access (NUMA) architectures such as AMD

Opteron and upcoming Intel Nehalem based multisocket systems. The default work loop for

FWQ, as mentioned above, increments a variable declared ―register long long

count‖. However, gcc V4.3 (and many earlier versions we have tested) with the default ―-g‖

optimization in the makefile does not allocate ―count‖ to a register as one would expect, but

rather allocates it in a memory location. This introduces variation or fuzz in the fixed work

sample runtime due to memory reference latency variations. However, when one turns on ―-

O1‖ or higher optimization levels, the work loop is eliminated by the compiler optimizer

entirely! To get around this problem, we wrote an x86-64 in 64b mode assembly language work

loop that only uses registers and inc, cmp, js and nop instructions. To use this assembly

language implementation of the fixed work, include the -DASMx8664 compile line option.

There is a third alternative fixed work loop implementation that is based on a DAXPY vector

update operation (of default size 1,024 64b elements). This also suffers from memory latency

noise problem, but increases the work to minimize this hardware noise effect. This alternative

can be used by including the –DDAXPY compile line option.

To compile a version of FWQ/FTQ that runs on a multicore or SMP environment where each

thread runs the work loop of the benchmark (resulting in multiple files when run, one data set per

thread), you can invoke:

Page 3 of 5

% make threads

This yields a similar set of executables, except with t_ as a prefix on the executable name,

indicating the pthreads version. It is not recommended that you use the threaded versions on a

single core.

Note the code uses sched_setaffinity() and pthread_setaffinity_np() to bind

the main process and the threads to cores. If your platform does not support this call, you should

replace this section of code with similar functionality.

To compile threaded and single versions of the FTQ/FWQ benchmark, invoke:

% make

Or

% make all

Mechanics of Running Benchmark

The simplest way to get FWQ/FTQ going is to just try it out with a small amount of work per

sample (-w option) and small sample count (-n option) and observe what the data looks like.

Start with the single threaded version and then when the behavior of that is well understood, then

try the multi-threaded version. FWQ/FTQ has just a few parameters. Although it might seem

strange to have the work quantum granularity as a compile time option, this is done so that the

instruction stream is not polluted with conditionals enforcing a run-time determined work

quantum.

The parameters are as follows:

-s Dump output to the STDOUT

-o Prefix for output data file names

-i Bits in sampling interval limits (FTQ only). Number of loop iterations is 2^i.

-w Bits in work amount (FWQ only). Number of loop iterations is 2^w.

-n Number of samples to take

-h Usage

Consider a simple run like this:

% ./ftq -o testrun -i 20 -n 1000

What does this simple run produce? If we look at the current directory, we should see two new

files: testrun_counts.dat and testrun_times.dat. These are the output from FTQ.

The testrun_times.dat file contains the end times of each sample as reported by the high precision

timers in cycle.h. We should see 1000 lines for the above case, corresponding to the end times

for each of the 1000 samples executed. Note that if one subtracts time k from time k+1, one can

observe the actual sampling interval that the k+1'th sample required. Note also that the first

sample has no start time and is generally thrown out without losing any really valuable

information.

The testrun_counts.dat file contains the real data from FTQ. Each of the 1000 entries represents

the number of work quanta (in this case, 32 increment operations followed by 31 decrements per

Page 4 of 5

work quantum) executed in the time period ending at the corresponding time in the

testrun_times.dat file.

The final unexplained argument is -i 20 or -w 20. The sampling intervals that FTQ uses are

determined using a bitmask and some simple tricks to deal with long samples that must be

compensated for. The 20 is the number of bits that the desired sampling period requires in terms

of processor cycles (so even though it may seem large, it isn‘t). In other words, for the case

above, -i 20, a single sample period will span at most (2
20

)−1 processor cycles. On a 2.8-GHz

processor, this corresponds to a sample period of approximately 347 µs or 0.347 ms.

For FWQ the amount of work in core cycles per work loop per sample period on an x86_64

processor is given in the table below. To determine the runtime take the sample work amount

(2
20

 in this case) times the number of cycles per work loop times the cycle time of the processor.

For the default case, this is 2
20

x380/2.8e9 = 0.142 sec per sample. A better sample period is near

1 µs. For this case, one should choose w = ln2(0.001*2.8e9/380) = 12.8 (choose w = 12 or 13).

Compile Option Compile Optimization Processor cycles per work

loop per sample

-DASMx8664 O1 6.4

Default -g 380

-DDAXPY -O3 (with vectorization) 2075

The threaded versions of the code have one additional argument, -t threads, which is used

to specify the number of threads to be executed. In the case of a multithreaded run, instead of just

getting files like ftq_times.dat and ftq_counts.dat, you will get a pair of files for each thread. The

thread IDs range from 0 to numthreads−1, so for a two threaded run you will see:

ftq_0_counts.dat

ftq_0_times.dat

ftq_1_counts.dat

ftq_1_times.dat

and
fwq_0_times.dat

fwq_1_times.dat

Verification of Results

Using the resulting data from FWQ/FTQ, you can use tools you likely already have on your

desktop system to manipulate that data.

With GNU Octave on your desktop system and using the data from testrun_counts.dat, you can

run the following sequence of commands.

1. Change the working directory to where the data is, e.g., data_dir.

octave:1> cd 'data_dir'

2. Add the path to the ftq/Octave directory to the search list. This will allow Octave to find the

various .m files needed below.

Page 5 of 5

octave:2> addpath('path name to ftq/Octave directory')

3. Set up the files to load.

octave:3> d=dir('ftq_*_times.dat');

4. Load the FTQ time output files, process the data, and print out the statistics.

octave:4> [data,xb,sd,k]=analyze('.',d);

Loading data...

fwq_0_times.dat

fwq_1_times.dat

fwq_2_times.dat

fwq_3_times.dat

Computing scaled noise...

Computing kurtosis and skewness values...

Min, Max=

 6715191

 93270283

Mean=

 0.0119197 0.0073124 0.0070419 0.0083376

StdDev=

 0.0166154 0.0121701 0.0080184 0.0091711

Knum=

 1.0678e+03 1.7122e+00 3.5251e-03 7.9641e-01

Kden=

 1.2195e-02 3.5099e-03 6.6140e-04 1.1319e-03

kurtosis=

 8.7565e+04 4.8483e+02 2.3297e+00 7.0061e+02

skewness=

 255.4680 17.0578 1.4652 8.0548

5. Plot all the data and use 100 bins for the histograms.

octave:5> plotter(data,xb,sd,k,1,100);

Two windows should pop up, one with the scaled noise for each output file and one with the

histogram of the noise for each output file.

A similar interaction with Octave for loading, analyzing, and plotting the data is:

octave:1> cd 'data_dir' Same

octave:2> addpath('path name to ftq/Octave directory') Same

octave:3> d=dir('fwq_*_times.dat'); <-- fwq

octave:4> [data,xb,sd,k]=wanalyze('.',d); <-- wanalyze

octave:5> plotter(data,xb,sd,k,1,100); Same

Note that a ―diminutive noise environment‖ is one that produces FWQ time samples with small

maximum mean of the scaled noise (xb<1.0e-6), small maximum standard deviation of scaled

noise (sd<1.0e-3), and small maximum kurtosis (k<100).

	FWQ/FTQ
	Summary Version
	Purpose of Benchmark
	Characteristics of Benchmark
	Mechanics of Building Benchmark
	Mechanics of Running Benchmark
	Verification of Results

