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Abstract—Large scale HPC applications are becoming in-
creasingly data intensive. At Oak Ridge Leadership Computing
Facility (OLCF), we are observing the number of files curated
under individual project are reaching as high as 200 millions
and project data size is exceeding petabytes. These simulation
datasets, once validated, often needs to be transferred to archival
system for long term storage or shared with the rest of the
research community. Ensuring the data integrity of the full
dataset at this scale is paramount important but also a daunting
task. This is especially true considering that most conventional
tools are serial and file-based, unwieldy to use and/or can’t scale
to meet user’s demand.

To tackle this particular challenge, this paper presents the
design, implementation and evaluation of a scalable parallel
checksumming tool, fsum, which we developed at OLCF. It is
built upon the principle of parallel tree walk and work-stealing
pattern to maximize parallelism and is capable of generating
a single, consistent signature for the entire dataset at extreme
scale. We also applied a novel bloom-filter based technique
in aggregating signatures to overcome the signature ordering
requirement. Given the probabilistic nature of bloom filter, we
provided a detailed error and trade-off analysis. Using multiple
datasets from production environment, we demonstrated that
our tool can efficiently handle both very large files as well as
many small-file based datasets. Our preliminary test showed that
on the same hardware, it outperforms conventional tool by as
much as 4x. It also exhibited near-linear scaling properties when
provisioned with more compute resources.

I. INTRODUCTION

Data has overwhelmed the digital world in terms of volume,
variety and velocity [1]. Similarly, the scale of scientific
data requirement in HPC environment is also growing at
unprecedented pace. As an example, at Oak Ridge Leader-
ship Computing Facility (OLCF), the file and storage system
designed to serve 2008 Jaguar machine (known as Spider 1)
provided 10 petabytes usable space. Four years later, Spider
2 (for primarily Titan supercomputer) started provisioning 32
petabytes to the users [2]. There are 50 million directories and
half a billion files in the system, this is barely under control
with active purging policy in place. We are also observing that
a single project can produce as much as 200 million files in
the short span of time. As such, the storage, management and
analysis of such amount of data present familiar yet difficult
extreme-scale data challenges.

Another aspect of the scientific dataset is its value: it can
take millions of million compute hours to yield the dataset.

The results often need to be sanitized, validated, and archived
for long term storage, and/or shared with scientific community
for further analysis. Ensuring its integrity during the usefulness
of data life-cycle is paramount important. This life-cycle may
include activities such as copying data from one file system
to other, moving from one site/facility to another. However,
it is not uncommon to see user reporting of missing, and/or
corrupted files. Also, silent data corruption has been reported
in many production systems [3].

One of primary approaches that counters file corruption
and provide data integrity is through checksumming [4]. By
comparing previous and current checksums, one can detect
whether the content has changed. Conventionally, the check-
summing tools are both serial and file based. This is where
the conventional checksum tools fall short as far as extreme-
scale dataset in HPC is concerned. Profiling of our current
production file system clearly shows the bi-modal trend: We
have over 60% of small files that are less than 1 MiB in size,
but we also have tens of thousands of files that are over 4 TiB,
hundreds of them are as large as 32 TiB each.

In both scenarios existing serial and file based checksum
method are not efficient to handle either millions of files or
files as large as many terabytes. In best cases, they take an
excruciatingly long time to process, or fail outright due to the
size of the data. Hence, a parallel checksumming approach is
truly needed and preferred. On the other hand, with millions of
files, file-based checksums are cumbersome and lack usability.
Therefore, a single dataset level signature is more desirable.

In this paper, we present a novel, parallel dataset check-
summing approach, fsum. More specifically, we first break
files into chunks of reasonable size, and calculate chunk-level
checksums in parallel. Next, we develop a bloom filter based
method to aggregate all chunk-level checksums to yield the
single dataset-level checksum. Due to bloom filters’ proba-
bilistic nature of error, we provided a detailed analysis on the
trade-offs, and we demonstrated its scalability with represen-
tative datasets from our current production environment.

The rest of the paper are organized as the following: we
present the design and implementation of fsum in Section II.
The experiment results and related works are shown in Sec-
tion III and Section IV. We conclude the paper in Section V.



II. DESIGN AND IMPLEMENTATION

In this section, we discuss three aspects of the design that
differentiate fsum from other solutions. First is about the
need for chunk-level checksum versus file-level checksum.
Then, we focus on work-stealing pattern and the consequent
need for aggregating (and sorting) all chunk-level checksum
to generate a single, consistent signature. Finally, we show the
bloom filter-based algorithm as an option to solve the ordering
issue discussed earlier. We argue that it can greatly improve
the scalability, at the cost of probabilistic error. And finally,
we discuss the trade-offs on CPU, memory, error probability
in details.

A. File-level and chunk-level checksum

Conventional checksums are file based. However, in HPC
environment, it is not uncommon for end users to create very
large files. A recent profiling study using fprof [5] for OLCF
Spider 2 Lustre file system shows a bi-modal distribution: A
majority of total number of files are really small, e.g. less
than 1 MiB, and a small percentage of files are really big:
hundred of thousands files with size 4 TiB and beyond, some
can be as large as 32 TiB. With traditional checksumming
tools, which are most likely serial and file based, it can take
many hours to finish processing them. We also ran into cases
when a program just hangs with super large input size. Given
this file distribution, breaking up a large file into a sequence
of chunks is absolutely necessary.

Each data chunk object is self-contained, in the sense
that it carries all the necessary offset information for each
process to handle them independently even when the chunk
has been transferred from one process to another. Regarding
the chunk size, we have to compromise on two fronts: if we
make the chunk small, parallelism increases at the cost of
both processing and metadata overhead associated with each
chunk if we increase the chunk size too much, we might
miss out on the opportunity for increasing parallelism for
files with size just below the chunking threshold. By default,
our checksumming approach will parallel scan all files and
adaptively pick a chunk size that represents a balance of total
chunks and total file size.

B. Parallel work-stealing pattern

After chunking, we utilize the work stealing pattern [6],
[7] to distribute all the chunks to multiple processes to
generate chunk-level checksums in parallel. In particular, an
idle process sends out a work request, or “steals” work from
a busy process, which equally distributes its local work queue
to one or more requesters. We implement the work stealing
pattern using MPI. Initially, the root process (rank 0) puts the
files and/or directories that are intended to be checksummed
into its local work queue, while other processes have empty
local work queue. As fsum proceeds, all work gets spread
out among multiple processes.

A major characteristic of the work stealing pattern is its
randomness. When executing fsum multiple times, using
the same input dataset but different or the same number
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Fig. 1. Random work distribution using different/same number of processes
during different executions

of processes, the work distribution among all processes are
different, in the sense that a chunk might be assigned to a
different process. Therefore, a process calculates a different
set of chunk-level checksums. However, since we take the
same dataset as input, the union of checksum sets from all
the processes are identical.

For example, as shown in Figure 1, for a dataset that
contains three files, which have been split into multiple chunks,
the work distribution using 4 and 8 process are obviously
different. Furthermore, during two executions of fsum using
both 4 processes, the work distribution are still different. In
other words, we need a method that can generate a single and
consistent signature regardless the non-deterministic nature of
the algorithm and how user will run it.

C. Bloom filter based signature generation

We discussed earlier about the unwieldiness of having file-
based signatures for a large dataset with millions of files.
Our goal is to generate a single and consistent dataset-level
signature regardless the random nature of work-stealing pattern
and how user launch the parallel process. We compare two
design options here: sorting-based and bloom-filter based.

1) Design principles and the sorting-based approach:
The dataset-level signature should be only dataset content
dependent. In other words, two signatures generated by two
executions of fsum based on the same input dataset should
be identical. However, the randomness of the work stealing
pattern leads to the fact that the chunk-level checksums
are generated in different processes and in different orders.
Besides, a desirable approach should avoid storing all the
chunk-level checksums on a single process/node, which might
face memory pressure and become the bottleneck.

One straightforward solution is to concatenate all chunk-
level checksums to a hash list, and calculate the top hash
based on it. Another possible approach is to use a Merkle



tree [8] to generate the root hash. However, as mentioned
before, the checksums are generated in different orders during
multiple executions of fsum. Therefore, a sorting is necessary.
However, it is not scalable since the at some point, the root
process has to gather checksums from all the processes and
store them in memory as a hash list or a Merkle tree. In
extreme cases, distributed sort or external sort needs to be
performed, which inevitably increases the complexity of the
checksum aggregation.

2) Bloom filter: Due to drawbacks of sorting, we present
a bloom filter based approach to aggregate the chunk-level
checksums. A bloom filter is an array of m bits that are initial-
ized to all 0s, and its functionality is to identify membership,
i.e., whether an element is in a set. The bloom filter supports
two basic operations: insertion and query. By inserting an
element, k hashed positions, which are calculated based on the
element, out of m bits are set to 1. By querying an element,
k hashed positions are tested against 1, and any 0 findings
indicate that the element is not in the set. There are two types
of errors: false negative errors never happen to bloom filter,
i.e., an element that is actually in the set is always returned
as it is. However, false positive errors could happen with a
probability, meaning that an element is not in the set might
be reported as it is, since the k bits in the bloom filter might
be set to 1 by other elements due to hash collisions. The false
positive error probability p relates to the size (length) of the
bloom filter m, the number of elements inserted n, and the
number of hash functions k, according to

p = e−
m
n (ln 2)2 . (1)

In other words, to reach a certain false positive error
probability, we should set the bloom filter size to

m = −n ln p

(ln 2)2
. (2)

Therefore, given p, the bloom filter size is linearly related
to the number of elements that are intended to be inserted. In
our application, n is the number of chunks.

3) Chunk-level checksums aggregation algorithm: From a
different point of view, the bloom filter can be considered as a
bitmap signature of a set after all elements have been inserted,
as long as the bloom filter parameters are set properly. Due to
the design and bit array nature of the bloom filter, we notice
it has two features as a signature of a set:

• The bloom filter is independent of insertion orders. For
example, the set of {A,B,C,D,E} and the set of
{E,D,C,B,A} lead to the same bloom filter.

• We can perform OR operation of bit arrays to represent
the union of multiple datasets. For example, if the bloom
filter b1 is calculated based on the set of {A,B,C} and
b2 is based on the set of {D,E}, the result of b1 ∨ b2
represents the set of {A,B,C,D,E}, requiring that b1
and b2 have the same parameters.

Due to these two features, we utilize the bloom filter as
an intermediate data structure to aggregate the chunk-level

Algorithm 1 Chunk-level checksums aggregation algorithm
1: procedure CHECKSUM AGGREGATION((C, np))
2: for each ci in C do
3: for j = 1→ k do . Insert ci to BF
4: idx← hj(ci)
5: BF (idx) = 1
6: end for
7: end for
8: if rank > 0 then . Send BF to root process
9: MPI.send(BF, dst = 0)

10: else . Gather BFs from all processes
11: for i = 1→ np do
12: BF = BF ∨MPI.recv(src = i)
13: end for
14: end if
15: MPI.comm.barrier()
16: if rank == 0 then . Generate the signature
17: sig = SHA1(BF )
18: return sig
19: end if
20: end procedure

checksums. More specifically, first at each process, we insert
all local chunk-level checksums into a bloom filter, of which
all processes has the same parameters, and then send it
to the root process, where we gather all the bloom filters
using OR operation. Finally we calculate SHA1 hash function
based on the final bloom filter and we obtain the dataset-
level signature. The bloom filter based dataset-level signature
generation algorithm is shown in Algorithm 1.

4) Memory and computation overhead: The bloom filter
is highly compact in terms of memory overhead. Since the
bloom filter size m relates to the error probability, we discuss
how to set p and m in Section II-C5.

For the computation overhead, the insertion of each element
calculates k hash functions, which takes constant time, hence
the overall aggregation process takes O(n) time. On the other
hand, a typical sorting algorithm takes O(n log n), which is
less efficient than bloom filter based approach when n is at
extreme scale.

5) Error probability: 1

Due to probabilistic nature of the bloom filter, fsum might
end up in error: two different datasets have the same signature,
i.e., the calculated bloom filter of two different chunk-level
checksum sets are the same.

Consider two sets, C1 = {a0, a1, ..., an1−1} and C2 =
{b0, b1, ..., bn2−1}, after inserting all elements in each set into
two bloom filters, B1 and B2, accordingly, if B1 = B2, we
have the following two facts:

• Since we calculate the bloom filter size using the same
equation 2 and B1 = B2, n1 is equal to n2.

1To focus on errors caused only by the bloom filter, we assume that the
signatures of two different chunks, or two different bloom filters, are always
different.
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• Suppose there are r(r ≥ 1) elements that are in C1 and
C2 are different, i.e., C1 = {x0, x1, ..., xr−1, cr, cr+1, ...,
cn−1}, C2 = {y0, y1, ..., yr−1, cr, cr+1, ..., cn−1} (xi 6=
yj(i, j = 0, 1, ..., r − 1)). When performing query oper-
ation on B2 using xi, since xi has been inserted to B1

(no false negative error) and B1 = B2, we have false
positive error, and the probability is p. Similarly, when
performing query operation on B1 using yj , we also have
false positive error with probability of p.

Conversely, if all xi and yj(i, j = 0, 1, ..., r− 1) have false
positive errors, the two bloom filters are the same, in which
case fsum has lost the ability to detect the signature difference
of these r chunks, which results in an error. Therefore, given
r different chunks, the error probability of fsum is p2r.

We consider the worst case: there is only one different
chunk-level checksum, i.e., r = 1. Since there are a total of n
chunks that might be different, the number of errors of fsum
follows a binomial distribution e ∼ B(n, p2). Furthermore, we
calculate the probability P (e = 0) = (1− p2)n. To make sure
P (e = 0) > 99.99%, we set p to

p <

√
1− n
√
0.9999. (3)

Since p relates to the ratio m
n according to equation 1, we

set m to

m > −n× ln
√

1− n
√
0.9999

(ln 2)2
. (4)

We plot the variation of P (e = 0) when m
n increases in

Figure 2, with different values of n. For example, given 100
million chunks, suppose r = 1 as the worst case, to make sure
we are 99.99% confident that there is no errors from BF-based
signature: P (e = 0) > 99.99%, i.e., (1− p2)n > 99.99%, we
set p ≤ 0.000001, hence m ≥ −n × ln 0.0000001/(ln 2)2 ≈
29n, which is about 2.7GiB memory to store the bloom filter
at each process. While for the sorting approach, since each
chunk-level checksum is a 160-bit SHA1 hash value, all of
them take 14.9GiB memory. If 8 processes are used, at each
process, the memory usage is only 1.86GiB. However, in the
aggregation of sorting, all checksums have to be stored in the
root process, which becomes the memory bottleneck.
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III. EXPERIMENT RESULTS

In this section, we evaluate the scalability performance of
fsum, and compare fsum with other related approaches.

A. Evaluation configurations

All the experiments are conducted on Rhea, a 512-node
Linux cluster at OLCF. Each Rhea node has two 8-core 2.0
GHz Intel Xeon processors with 128GB of memory. The
underlying file system is Spider 2 Lustre file system. Due to
page limits, we don’t consider any effect of stripe count, which
is set to the default value 4 in all experiments.

We choose two datasets that scientific users created on
Spider 2, D1 and D2, and their parameters are shown in
Table I. They are representative in the sense that, in D1, there
are more than 28 millions files, and 93% of them are less than
4KiB, while the average file size in D2 is 1.19GiB and the
largest file is 514.41GiB.

TABLE I
PARAMETERS OF TWO DATASETS

D1 D2

Total size 5.39TiB 14.74TiB
Number of files 28,114,281 15,590
Average file size 205.83KiB 1.19GiB

Chunk size 16MiB 64MiB
Number of chunks 28,343,725 251,629

B. Evaluation results

First, we evaluate the scalability performance of fsum, us-
ing 8 Rhea nodes with different number of process to generate



signatures of the two datasets, and we plot the runtime and
processing rate in Figure 3 and Figure 4. As expected, there
are speedups when using more processes. We notice that the
speedup increases almost linearly as the number of processes
increases, until the performance is bounded by I/O bandwidth.
In addition, comparing results of the two datasets, we observe
that generating signature for D1 is much less efficient than for
D2, since handling small files is bounded by metadata retrieval
in Lustre file systems.

The signatures generated using different number of pro-
cesses for the same dataset are always the same, which verifies
that the signature generated by fsum is only dataset content
dependent, hence the bloom filter based dataset-level signature
generation approach is feasible and correct.

Next, we conduct experiments to validate that fsum can
detect data corruption. Specifically, we compare the signatures
of the original dataset and the one that has been corrupted.
For each dataset, we conduct 100 experiments, in each of
which we randomly choose a file and change a single byte
at a random position. We notice that the signatures of the
corrupted datasets are always different from the one of the
original dataset. Therefore, fsum can detect data corruption
and can be a tool for data integrity check.

Finally, we compare fsum with related approaches in terms
of of memory usage and time efficiency. First, we compare the
memory usage of the bloom filter in fsum and the maximum
usage of sorting at the root process, as shown in Figure 5. For
bloom filter parameters, we set P (e = 0) > 99.99%, and m is
calculated according to equation 4. We observe that the bloom
filter approach uses about 5.8 and 7.1 times less memory than
the sorting for D1 and D2 accordingly.

Second, we compare the runtime of sha1sum and fsum
on a single node, using a 514.41TiB file. For fsum, we utilize
4 processes with different chunk sizes, and the results are
shown in Figure 6. We notice that fsum is around 2.6 to
4.4 times more efficient than the single-threaded sha1sum.
Furthermore, for large files, a larger chunksize results in better
performance.

IV. RELATED WORKS

Ensuring data integrity is essential in data storage and
transfer [4]. In the cases of millions of small files or a single
terabye-file, checksumming in parallel is truly preferred. In
general, there are two types of parallelism, and the first of
which is parallel hash functions [9], [10]. These approaches,
however, are hardly deployed in clustered systems due to lack
of ability to fully exploit the available computation resources.
The alternative is parallel workload [11], i.e., break files into
chunks and use multiple processes to calculate a checksum
for each chunk, then aggregate all the checksums to a single
dataset-level signature. The master-slave architecture in [11] is
one possible mechanism to distribute workloads. And Merkle
tree [12], which allows different hash subtrees to be computed
without synchronization at the root, is utilized to aggregate all
the checksums. However, the master-slave architecture suffers
from tremendous communication overhead between master
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and slave workers. On the other hand, the work stealing pattern
is a decentralized and self-organized approach [6], [7], and due
to its randomness, Merkle tree is no longer feasible without a
universal sorting, which is less efficient than fsum in terms
of both memory and computation overhead.

V. CONCLUSIONS

In this paper, we present the design, implementation and
evaluation of a scalable parallel checksumming tool, fsum,
for extreme-scale dataset integrity check. It is built upon the
principle of parallel tree walk and work stealing pattern to
maximize parallelism and to overcome the limitation of tradi-
tional serial and file-based checksumming tool. It can generate
a single and consistent dataset-level signature by aggregating
chunk-level checksums, which addressed the unwieldiness of
generating and maintaining large number file-based signatures,
particularly when the number of files keep growing in large
scientific dataset. We also came up with a novel bloom filter-
based algorithm to reduce memory footprint and to increase
scalability. Using representative and real production datasets,
we demonstrated that fsum exhibits near-linear scalability,
and is able to detect data corruption while it’s both memory
and computation efficient than others approaches.
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