
	 1	

Nekbone	
Summary	Version	
2.3.6	
	

Purpose	of	Benchmark		
Nekbone captures the basic structure and user interface of the extensive Nek5000
software which is a high order, incompressible Navier-Stokes solver based on the spectral
element method. Nekbone solves a standard Poisson equation using a conjugate gradient
iteration with a simple preconditioner on a block or linear geometry. Nekbone exposes
the principal computational kernel to reveal the essential elements of the algorithmic-
architectural coupling that is pertinent to Nek5000. More details on the benchmark are
provided in the readme.pdf file included in the distribution.

Characteristics	of	Benchmark		
Nekbone solves a standard Poisson equation using the spectral element method with an
iterative conjugate gradient solver with a simple preconditioner. The computational
domain is partitioned into high-order quadrilateral elements. Based on the number of
elements, number of processors, and the parameters of a test run, Nekbone allows a
decomposition that is either a 1-dimensional array of 3D elements, or a 3-dimensional
box of 3D elements. The benchmark is highly scalable and can accommodate a wide
range of problem sizes, specified by setting the number of spectral elements per rank and
the polynomial order of the elements by editing the appropriate build and input files.

The benchmark consists of a setup phase and a solution phase. The solution phase
consists of conjugate gradient iterations that call the main computational kernel, which
performs a matrix vector multiplication operation in an element-by-element fashion.
Overall each iteration consists of vector operations, matrix-matrix multiply operations,
nearest-neighbor communication, and MPI Allreduce operations. The benchmark is
written in Fortran and C, where C routines are used for the nearest neighbor
communication and the rest of the compute kernel routines are in Fortran. Note that the
CORAL version of the benchmark is implemented using OpenMP and MPI and may be
run with a varied mixture of threads and processes. 	

The benchmark is intrinsically well load balanced, with each process having the same
number of spectral elements and therefore the same amount of computational work.
Communication consists of nearest neighbor point-to-point communication with up to 26
surrounding processes and MPI Allreduce operations. While the amount of data
communicated with neighboring processes can vary somewhat between processes,
depending on proximity to the domain boundaries, on most systems the effects of this
imbalance has been observed to be minimal. For systems where MPI reduction operations
scale and point-to-point communications are non-interfering between network nodes the
performance of the benchmark has been observed to scale nearly linearly with increasing

	 2	

number of nodes across several orders of magnitude. At the node level elements are
distributed across threads and communication gather-scatter operations are performed
cooperatively between threads. Good scaling to tens of OpenMP threads has been
observed when elements are distributed evenly across threads and times for OpenMP
synchronization operations in the gather-scatter and MPI reduction operations are not
excessive.

	

Mechanics	of	Building	Benchmark:	
• Change	to	the	nekbone	test/example1	directory	
• Edit	the	SIZE	file,	if	needed,	to:	

o set	the	maximum	number	of	MPI	ranks,	lp	
o set	the	maximum	number	of	elements	per	rank,	lelt		

• Edit	the	makenek	script	and	set:	
o SOURCE_ROOT	to	the	path	to	the	nekbone	source	code	
o F77	to	the	name	of	the	Fortran	compiler	
o CC	to	the	name	of	the	C	compiler	
o The	code	must	be	compiled	to	use	8	byte	floating	point	values	-	the	

necessary	compiler	flags	to	promote	4	byte	reals	to	8	byte	doubles	
will	be	determined	by	the	makenek	script	on	some	systems,	on	others	
they	must	be	specified.	

o Uncomment	IFMPI	flag	if	not	using	MPI	
o To	use	OpenMP	specify	the	compiler	specific	OpenMP	compiler	flags	
o Uncomment	and	specify	any	link	flags	in	USR_LFLAGS	
o Uncomment	and	specify	optimization	flags,	OPT_FLAGS_STD	and	

OPT_FLAGS_MAG	
o Enable/Disable	routine	timers	by	adding/removing	“TIMERS”	pre-

processor	symbol	in	PPLIST.	Routine	timers	measure	and	report	the	
time	for	various	solver	operations.	

• Run	the	makenek	script.	If	makenek	fails	to	recognize	the	compiler	it	will	
generate	a	makefile	and	stop,	the	makefile	may	then	be	edited	manually	and	
the	code	compiled	by	running	make.		

• Run	‘make	clean’	to	remove	previous	build	
	

Mechanics	of	Running	Benchmark	
	 	

1. General:	
• Compile	as	described	above	with	or	without	MPI	and	OpenMP	
• Edit	data.rea:	

o “ifbrick”	should	remain	set	to	“true”	
o Set	iel0,	ielN,	and	ielD	to	the	minimum,	maximum,	and	step	

between	solves	in	spectral	elements	per	MPI	rank.	

	 3	

o Set	nx0,	nxN,	nxD	to	desired	minimum	number	of	grid	points	in	
each	direction	per	element,	maximum	number	per	element,	and	
grid	point	step	between	solves.		

o Optionally	set	npx,	npy,	npz	to	desired	process	decomposition	in	x,	
y,	z.	If	the	product	of	npx*npy*npz	equals	the	number	of	rank	the	
specified	process	decomposition	will	be	used,	otherwise	a	process	
decomposition	will	be	generated.	

o Optionally	set	mpx,	mpy,	mpz	to	desired	per	process	element	
decomposition	in	x,	y,	z.	If	the	product	of	mpx*mpy*mpz	equals	
the	number	of	elements	per	process	the	specified	decomposition	
will	be	used,	otherwise	an	element	decomposition	will	be	
generated.	

• run	nekbone	executable.	Number	of	MPI	ranks	and	OpenMP	threads	are	
specified	using	standard	MPI	and	OpenMP	flags	and	variables.	

• Note:	For	CORAL	problem	values	used	in	data.rea	must	meet	the	
specification	of	the	CORAL	problem	defined	below.	

2. Small	problem:		single	node	and/or	single	CPU	
• Compile	without	MPI	by	setting	IFMPI	flag	in	makenek	to	‘false’	
• Edit	data.rea	file:	

o Set	iel0,	ielN,	ielD	to	specify	the	number	of	element	per	rank	–	the	
values	should	be	set	to	something	greater	or	equal	to	1	but	
generally	small	to	keep	the	problem	size	small.	iel0	and	ielN	can	be	
set	to	the	same	value,	and	ielD	can	be	set	to	1	to	solve	for	only	one	
element	count.	

o Set	nx0,	nxN,	nxD	to	9,	12,	3	respectively	to	use	CORAL	grid	point	
counts.	

o Set	npx,	npx,	npz	to	1	
o Optionally	specify	the	mpx,	mpy,	mpz	element	decomposition	or	

set	to	1	
• run	nekbone	

3. Medium	problem:		
• Compile	as	described	above	with	MPI	enabled	and	IFMPI	flag	commented	

out.	
• Edit	data.rea:	

o Set	iel0	and	ielN	to	the	desired	number	of	elements	per	rank.		
o Set	nx0,	nxN,	nxD	to	9,	12,	3	respectively	to	use	CORAL	grid	point	

counts.	
o Optionally	specify	the	npx,	npy,	npz	process	decomposition	or	set	

to	1	
o Optionally	specify	the	mpx,	mpy,	mpz	element	decomposition	or	

set	to	1	
• run	nekbone	with	any	combination	of	processes	and	threads.	

4. Large	Sequoia	problem:	
• The	Large	Sequoia	problem	is	defined	as	having	50,331,648	spectral	

elements.		The	values	in	the	data.rea	file	that	determine	the	polynomial	

	 4	

orders	(nx0,	nxN,	and	nxD)	are	to	be	set	to	9,	12,	and	3	respectively.	On	
Sequoia	the	problem	was	run	using	3,145,728	ranks	and	2	threads	per	
rank	in	a	192x256x64	(npx,npy,npz)	process	distribution	with	16	
(iel0=16,	ielN=16,	ielD=1)	elements	per	rank	in	a	2x2x4	(mx,my,mz)	
decomposition.	The	number	of	MPI	ranks,	OpenMP	threads,	and	elements	
per	rank	used	maybe	any	value	so	long	as	total	spectral	element	count	
remains	50,331,648	elements	and	the	ratio	of	the	largest	to	smallest	
value	in	the	set	(npx,	npy,	npz)	is	not	greater	than	5.	The	values	
controlling	the	polynomial	orders	must	remain	fixed	at	9,12,	and	3.		

• Compile	as	described	above	with	MPI	enabled	and	altering	lp	and	letl	in	
SIZE	as	required	

• Edit	data.rea	to	set	the	appropriate	number	of	elements	per	process.	
• run	nekbone	

5. CORAL	class	problem:	
• The	CORAL	problem	is	defined	as	having	approximately	0.5	million	

spectral	elements	per	petaflop	of	theoretical	peak	performance	of	the	
system.	The	number	of	elements	used	may	be	any	value	within	15%	of	
the	approximate	value	calculated	for	the	system.	A	1.5	EF	system	
therefore	should	use	a	total	element	count	within	15%	of	750	million	
elements.		

• The	total	element	count	is	the	number	of	MPI	ranks	multiplied	by	the	
number	of	elements	per	rank.	The	number	of	MPI	ranks	and	number	of	
elements	per	rank	must	be	chosen	such	that	the	total	element	count	
meets	the	criteria	specified	above.	

• The	number	of	elements	per	rank	is	specified	in	the	data.rea	file	by	
setting	values	for	iel0,	ielN,	and	ielD.	The	values	set	for	iel0	and	ielN	
should	be	the	same	and	ielD	should	remain	set	to	1.		

• The	number	of	MPI	ranks	must	be	chosen	such	that	the	3D	process	
distribution	used	has	process	counts	in	the	X,	Y,	and	Z	dimensions	
(reported	as	npx,	npy,	and	npz	in	the	standard	output)	that	are	all	greater	
than	2	and	the	ratio	of	the	largest	to	smallest	value	in	the	set	(npx,	npy,	
npz)	is	not	greater	than	5,	unless	restricted	by	unresolvable	hardware	
limitations.	In	cases	where	the	value	of	this	ratio	exceeds	5	it	must	be	
shown	that	no	lower	ratio	could	be	achieved.	For	example	(npx	=	20,	npy	
=	15,	npz	=	7)	requires	no	justification,	while	(npx	=	79,	npy	=	17,	npz	=	
13)	should	be	justified	by	hardware	limitations.	

• The	process	distribution	(npx,	npy,	npz)	may	be	set	manually,	provided	it	
meets	the	criterion	above,	by	specifying	npx,	npy,	and	npz	values	in	the	
data.rea	input.	The	benchmark	will	generate	a	distribution	with	a	
minimal	ratio	if	the	value	of	npx*npy*npz	does	not	equal	the	number	of	
MPI	ranks.	

• The	local	element	distribution	(mx,	my,	mz)	may	be	set	manually	to	any	
value	by	specifying	mx,	my,	and	mz	values	in	the	data.rea	input.	The	
benchmark	will	generate	a	distribution	with	a	minimal	ratio	if	the	value	
of	mx*my*mz	does	not	equal	the	value	set	for	the	local	element	count.	

	 5	

• The	values	in	the	data.rea	file	that	determine	the	polynomial	orders	(nx0,	
nxN,	and	nxD)	are	to	be	set	to	9,	12,	and	3	respectively.		

• Compile	as	described	above	with	MPI	enabled	and	altering	lp	and	letl	in	
SIZE	as	required	

• The	benchmark	must	be	compiled	to	use	8	byte	floating	point	values	and	
reported	FLOP	counts	must	be	for	8	byte	floating	point	operations.		

• run	nekbone	using	any	desired	combination	of	processes	and	threads	that	
meet	the	constraints	specified	above	and	the	general	CORAL	requirement	
that	each	process	must	have	at	least	1	GB	of	useable	memory	available	to	
it.	

	
	

Verification	of	Results	
Benchmark	results	are	considered	correct	if	the	reported	rnorm	is	reduced	by	a	
factor	of	108	or	more	after	100	conjugate	gradient	iterations.	The	rnorm	value	is	
output	before	and	after	each	conjugate	gradient	solve	and	appears	in	the	output	as	
the	second	value	in	the	lines	as	shown	below		
	
cg: 0 4.2474E+04
cg: 101 5.0738E-07 4.5819E-01 6.0963E-01 8.9741E-13
	
The	exact	values	of	the	rnorm	will	vary	based	on	problem	setup,	system	hardware,	
and	compilers,	but	the	above	is	representative	of	a	typical	case	and	shows	a	
decrease	in	the	rnorm	of	greater	than	108	.	
	
The	FOM	to	be	reported	is	the	average	aggregate	MFlop	rate	calculated	and	reported	
in	the	nekbone	output	as	“Av	MFlops”	near	the	end	of	the	output.	

