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1 Introduction

The Livermore Unstructured Lagrange Explicit Shock Hydrodynamics (LULESH) proxy applica-
tion [1] is being developed as part of the NNSA Advanced Scientific Computing (ASC) National
Security Applications (NSapp) Co-design Project [6] at Lawrence Livermore National Laboratory
(LLNL). Originally developed as one of five challenge problems for the DARPA UHPC program, it
has since evolved and has received widespread use in Department of Energy (DOE) research programs
as a mini-app representative of simplified 3D Lagrangian hydrodynamics on an unstructured mesh.
This prior work includes ports to a number of research and production programming models [5], and
additions to its functionality and tuning for various architectures [3, 4].

However, proxy-apps are meant to evolve over time based on changes in the modeled application,
hardware and to capture additional application features [7]. Staying true to this evolutionary model
we have updated LULESH to version 2.0 to both add features that make it more representative as a
proxy application, as well as features to increase the usability of the mini-app.

The changes include easier usage of the proxy by allowing serial, OpenMP, MPI and MPI plus
OpenMP versions to be compiled from a single source. We also have changed some of the loop
structures to better reflect real applications and test compilers, added parallel I/O, and introduced
optional load imbalance. Finally, we made some cosmetic changes to the code and brought a number
of options including a visualization dump to the command line.

The rest of this document describes the updates to LULESH 2.0. First we focus on physics related
changes. Then we discuss code refactoring changes including the I/O and viz capabilities. Finally,
we describe the command line options, suggested use cases and constraints on optimization and other
changes that are not spelled out in previous documentation. We do not repeat information found in
the previous documentation as this document is meant to be a supplement to previous documentation
[1, 4].

2 Physics Implementation Changes

There are three physics related changes in LULESH 2.0 described in the following sections. These
include:

• The concept of multiple regions

• Dynamic timestep calculation
• Determining the end runtime of the problem

2.1 Multi-Region Problems

Hydrodynamics codes typically simulate problems containing multiple materials, which are then
mapped onto regions, or subsets of the mesh. For purposes of LULESH the distinction between
materials and regions is important, as LULESH is still hardcoded to solve the single-material Sedov
blast wave problem, but now does so using multiple variable-sized regions, all of which model the
same ideal gas material. In other words, there is still a single material, but it is coded as-if it supported
multiple materials.

This change to use multiple regions allowed us to:
• Add array indirections to key kernels (e.g. EvalEOSForElems that are common in unstruc-

tured hydrodynamics applications.



• Dynamically allocate region-length memory chunks, instead of all memory being large domain-
sized allocations, and

• The ability to artificially add minor load imbalance caused by different materials taking different
amounts of calculation of the Equation of State.

The regions are implemented by an outer loop over the regions and an inner loop over the elements
in a region as shown below. Each region computes the same material model that was found in the orig-
inal LULESH. However, the regions are of different sizes and have a different (artificially introduced)
computational cost.

f o r ( i n t r = 0 ; r < domain . numReg ( ) ; ++ r ) {
f o r ( i n t i = 0 ; i < domain . r egE lemSize [ r ] ; ++ i ) {

i n t elemNum = domain . r e g E l e m l i s t [ i ] ;
[ . . . ]

}
}

Hydrodynamics codes that use the Arbitrary Lagrangian Eulalrian (ALE) formulation - a common
style of hydrodynamics at LLNL - mixed zones and non-unit-stride accesses occur within a region.
Since LULESH is a pure Lagrangian code we do not capture the mixed elements, however, we do
capture the noncontiguous access patterns by setting up bins within a region of various sizes based on
code measurements. The bin sizes and frequency each is chosen is shown in Table 1. The details of
how elements in the mesh are assigned to regions is explained in comments in lulesh-init.cc.

Bin Size bin frequency
1 - 15 77.3%
16 - 31 16.4%
32 - 63 3.3%
64 - 127 0.4%
128 - 255 0.4%
256 - 511 0.3%
512 - 2048 1.9%

Tab. 1. Bin Size Distribution

The difference in computation cost is introduced by adding additional cost to some of the regions
in the EvalEOSForElems function by simply repeating the calculation multiple times. 50% of the
regions have no additional cost. 45% have a additional cost determined by a command line parameter.
The final 5% have an additional cost that is ten times that of the of the regions whose cost is specified
by the command line argument. This sort of variance is typical of the imbalance of costs in evaluating
material properties for various equations of state and/or strength models.

Finally, the reference implementation for multi-region loops puts OpenMP parallelism on the in-
ner loop over non-contiguous elements within a region. However, parallelism could be put on either
or both loops with the best parallelization strategy depending on machine and problem parameters.
Introducing regions should increase the importance of low OpenMP overheads on manycore plat-
forms, warp divergence and SIMT length on GPUs, and demonstrates one of the challenges of finding
parallelism when some regions have a small number of elements in them.



2.2 Courant Constraint Enabled by Default

In LULESH 1.0 the serial and OpenMP version used the courant condition as a time constraint by
default and all versions using MPI used a fixed time step. In LULESH 2.0 we have now reenabled
the courant in all versions for consistency. Also, by using the courant condition, we add another com-
mon parallel communication pattern to LULESH - the AllReduce reduction to compute the minimum
timestep across domains.

Finally, to guarantee correctness and prevent mesh tangling the initial timestep is set based on mesh
resolution. Since this changes the number of timesteps to solution a new set of correctness reference
values are shown in Section 4.3.

2.3 Shock Ends at about 1.0 cm

In the LULESH 1.0, the amount of energy deposited at the origin cell was constant, and as an
extensive quantity meant that less energy was being imparted in problems where the element size was
small. Thus, when differing numbers of cells were used in the simulation the energy concentration
was changed and the shock at simulation end time was in different locations. To fix this the energy is
now scaled with the mesh resolution so the shock is about 1.0 cm from the origin when the simulation
ends.

3 Code Refactoring and Other Computer Science Changes

LULESH 2.0 includes code refactoring changes to separate the various elements of LULESH each
into their own source file. These changes also added new functionality and updated LULESH to better
reflect coding styles and loop structures currently found in some of LLNL’s production applications.

3.1 Visualization and Parallel I/O

In LULESH 2.0 we add support to write visualization files for verification. Large parallel problems
use “poor mans parallel I/O” (or Multiple independent files) from the silo library [2], and the number
of file pieces is settable by the user, ranging from one-per-MPI task, to a single file, to any number
inclusive. The resulting output can be read by Visit [8] to visualize the simulation and to see the
distribution of regions in the domain. Both Silo and Visit are freely available for those interested in
this optional capability, but are not required to work with, nor are they distributed with LULESH 2.0.

3.2 Multiple Files

LULESH 2.0 now consists of six separate source code files. However we expect most users to only
need to analyze and modify lulesh.cc, which retains the numerics which are timed by default. The
other five files contain the support infrastructure for the new visualization and parallel I/O capabilities
and other non-physics support infrastructure such as command line options, MPI communication,
initialization, and general utilities. The contents of each of these files is described below.

• lulesh.cc retains most of the numerics, and most of the code of interest to the majority of
users.

• lulesh-init.cc contains a cleaned up constructor and some setup code.



• lulesh-par.cc contains all the MPI parallelism routines.
• lulesh-util.cc has a few miscellaneous routines - namely a command line switch parser

and timer output.
• lulesh-viz.cc has the ability to write a parallel ”poor mans I/O” multi-part silo file.
• lulesh.h has the C++ class definition for domain.

3.3 Miscellaneous Minor Changes

Various versions of LULESH 1.0 all had different class definitions and mixes of C and C++. In par-
ticular, the serial C++ version of 1.0 used very different data structure abstractions than did the widely
distributed MPI version. This made it difficult to implement and evaluate changes when moving from
the serial version to parallel versions.

In LULESH 2.0, a single source code base supports serial, OpenMP, MPI, and MPI+OpenMP
versions with compile-time flags. We have added more C++ features found in the LULESH 1.0 serial
version, such as stl:vectors. The code is also now a mix of C and C++, which is representative
of the source mixture found in many LLNL production applications with multi-decade lifetimes. The
biggest advantage of these changes is that it is now possible to change data structure representations
in all versions with a few lines of code modification in lulesh.h (see section 4.2 for more details).

We have also altered the loop structure of loops that iterate within a single element. In the LULESH
1.0 many of these were hand unrolled, whereas now there is a mix of loop structures - including short
loop iterations over the 8 nodes of an element. These changes were put in the test compiler’s ability to
optimize code written this way, while also adding to the readability and maintainability of the code.
Often loops within an element occur in the most computationally intense part of hydrodynamics
codes and getting good vectorization on modern hardware is important to their performance. As
compilers have improved, these smaller loops with static loop bounds and stack allocated variables
are often vectorized resulting in better performance than the unrolled loops. The combination of
added readability with potentially improved compiler optimizations is a win-win.

4 Updated Compile and Usage Options

In this section we describe how to use various new features of LULESH 2.0. We also suggest use
cases that we believe are interesting, as well as constraints that must be honored in order for LULESH
to obtain maximum representation as a proxy application.

4.1 Compiling and Command Line Arguments

There is a default Makefile with LULESH 2.0. Using it will compile your code with MPI
enabled, and without any mesh visualization. OpenMP support is enabled when the code is compiled
with the appropriate OpenMP flag for your compiler (e.g. -fopenmp). These compiler flags will
automatically define the symbol OPENMP which enables runtime calls to the OpenMP API.

To build other versions of interest the following flags may also be changed.
• -DUSE MPI=<int> is set to 0 to turn off MPI, and 1 to turn it on.
• -DVIZ MESH compiles in the ability to output visualization files. To use this functionality you

need to link to hdf5 and silo. An example of how to do this on LLNL machines is included in
the Makefile, as are references to find downloadable versions of these libraries.



LULESH 2.0 has a wide variety of command line arguments available to the user. These include:
• -b <int> sets the amount of load imbalance between regions. For this option 0 is no imbal-

ance and imbalance increases with higher inputs. The default is 1.
• -c <int> sets the cost of more expensive regions. Half the regions always have no extra

cost. 45% have an extra cost for the EOS equal to the number entered and 5% have an extra
cost of 10 times the extra cost entered.

• -f <int> sets the number of file parts that are output by the I/O routine. The default is the
(number of processor plus 10) divided by 9.

• -i <int> sets the number of iterations of the simulation to run. By default the simulation is
run for 0.01 seconds of simulated time.

• -r <int> sets the number of regions to run for each domain in the problem. The default is
11.

• -s <int> sets the number of elements of cube mesh along one side in a single domain. The
number of domains is always equal to the number of MPI ranks. The default is 30.

• -p prints out simulation progress at each timestep.
• -v plots the regions in viz files at the end of the simulation. To use this you must have compiled

with Silo.
• -h prints out the help message.

4.2 Suggested Usage

In this section we describe representative use cases of LULESH from past experience on multiple
generations of hardware. These are provided as a good starting place for your exploration, but should
not be taken as gospel. Often various useful lessons can only be learned about how codes interact with
hardware by varying problem size greatly or combining features in new and interesting ways. To that
end we have also provided what we consider reasonable defaults as a good starting place for users.

At LLNL, hydrodynamics is often run as part of a multi-physics simulation. For those simulations
the number of elements can range anywhere from about 2,000 to 100,000 per GB of memory, with
the upper end of that range limited to simple problems (like those represented by LULESH) in a pure
hydrodynamics (single physics) simulation.

The number of regions in problems can vary depending on the problem being modeled, and is at
least as large as the number of distinct materials in the problem. Most problems have 5 to 20 regions,
but problems with up to 100 are not uncommon. Likewise, load balance of regions is very problem
dependent. We believe we have provided reasonable defaults, but changing of these values to stress
various systems and to see how different degrees of load imbalance effects your computer system,
programming model or other interest is encouraged.

Adjusting the the load balance is done through the interplay of the -b and -c command line options.
The -b option will change the relative weight of regions within a domain. The larger the value entered
the greater disparity between the region with the most elements in a domain and the region with
the fewest. Since each domain will have a different mix of regions the higher this value the more
imbalance there will be between domains. The -c option will increase the relative imbalance between
regions within a domain and also increase the imbalance between domains as long as -b is not zero.
We suggest limiting -b to no greater than three or four as increasing it much further could result in
the EvalEOSForElems becoming more than half of the overall runtime. To turn off load imbalance



entirely (the default in LULESH 1.x), use -c 0.
In addition, the LULESH 2.0 distribution contains an additional header file named lulesh tuple.h.

This is an alternative header file that can replace lulesh.h, and demonstrates how changes limited
to the header file can alter the layout of the data structures without requiring changes to the com-
putational kernels, and potentially provide a more ideal mapping of data onto the underlying mem-
ory subsystem. This is done through use of C++ abstractions and inlined functions. By utilizing
lulesh tuple.h, one can quickly change from a struct of arrays to an array of structs data struc-
ture with a few minor edits.

4.3 Correctness Checking

Due to changes in how the initial timestep is set and the initial energy is deposited the correctness
values in [4] are no longer correct for LULESH 2.0. The rest of the methodology to test correctness
of an implementation is unchanged so we only provide an updated set of energy and iteration values
in Table 2.

Size Iteration Count Final Origin Energy
53 72 7.853665e+03
103 231 2.720531e+04
303 932 2.025075e+05
453 1477 4.234875e+05
503 1662 5.124778e+05
703 2402 9.417145e+05
903 3145 1.482403e+06

Tab. 2. Common on node sizes used for correctness checking and timing studies of LULESH

However, it is also possible to reproduce LULESH 1.0 correctness with LULESH 2.0. With the
following changes in lulesh-init.cc. Both changes occur at the bottom of the domain constructor.

• Change the initialization of scale from the current formula to 1.
• Change the initialization of deltatime() from the current formula to Real t(1.0e-7).

Note that if a large mesh is run with deltatime set as it was in LULESH 1.0 the mesh will tangle
and the simulation will fail.
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